早教吧作业答案频道 -->数学-->
如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是DF的中点,BC=a,写出求A
题目详情
如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.

(1)求证:点M是CF的中点;
(2)若E是
的中点,BC=a,写出求AE长的思路.

(1)求证:点M是CF的中点;
(2)若E是
![]() |
DF |
▼优质解答
答案和解析
(1)证明:∵AB与⊙O相切于点D,
∴OD⊥AB于D.
∴∠ODB=90°.
∵CF∥AB,
∴∠OMF=∠ODB=90°.
∴OM⊥CF.
∴点M是CF的中点;
(2)思路:
连接DC,DF.
①由M为CF的中点,E为
的中点,
可以证明△DCF是等边三角形,且∠1=30°;
②由BA,BC是⊙O的切线,可证BC=BD=a.
由∠2=60°,从而△BCD为等边三角形;
③在Rt△ABC中,∠B=60°,BC=BD=a,可以求得AD=a,CO=
,OA=
;
④AE=AO-OE=
-
=
.
连接DC,DF,
由(1)证得M为CF的中点,DM⊥CF,
∴DC=DF,
∵E是
的中点,
∴CE垂直平分DF,
∴CD=CF,
∴△DCF是等边三角形,
∴∠1=30°,
∵BC,AB分别是⊙O的切线,
∴BC=BD=a,∠ACB=90°,
∴∠2=60°,
∴△BCD是等边三角形,
∴∠B=60°,
∴∠A=30°,
∴OD=
a,AO=
a,
∴AE=AO-OE=
∴OD⊥AB于D.
∴∠ODB=90°.
∵CF∥AB,
∴∠OMF=∠ODB=90°.
∴OM⊥CF.
∴点M是CF的中点;
(2)思路:
连接DC,DF.
①由M为CF的中点,E为
![]() |
DF |
可以证明△DCF是等边三角形,且∠1=30°;
②由BA,BC是⊙O的切线,可证BC=BD=a.

由∠2=60°,从而△BCD为等边三角形;
③在Rt△ABC中,∠B=60°,BC=BD=a,可以求得AD=a,CO=
| ||
3 |
2
| ||
3 |
④AE=AO-OE=
2
| ||
3 |
| ||
3 |
| ||
3 |
连接DC,DF,
由(1)证得M为CF的中点,DM⊥CF,
∴DC=DF,
∵E是
![]() |
DF |
∴CE垂直平分DF,
∴CD=CF,
∴△DCF是等边三角形,
∴∠1=30°,
∵BC,AB分别是⊙O的切线,
∴BC=BD=a,∠ACB=90°,
∴∠2=60°,
∴△BCD是等边三角形,
∴∠B=60°,
∴∠A=30°,
∴OD=
| ||
3 |
2
| ||
3 |
∴AE=AO-OE=
看了 如图,在△ABC中,点O在边...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
集合A= {x|2小于等于x小于等于5},x属于R,A交B等于空集,求m取值范围集合A= {x|2 2020-05-15 …
抛物线y=-x²+2x+3与x轴相交于A,B两点(A在B的左边),与y轴相交于点C,顶点为D(2) 2020-05-16 …
已知抛物线Y=AX^2+bx+c(a不等于0) 的顶点坐标 为Q(2,-1),且与Y轴交于 点C( 2020-05-16 …
总分大于等于170分或数学成绩大于等于95分的为A;总分大于等于170分或数学成绩大于等于95分的 2020-06-03 …
如图抛物线y=1/4x^2+bx+c与x轴交于A(-2,0)如图抛物线y=1/4x^2+bx+c与 2020-07-29 …
如图,直线y1=2x与双曲线y2=8x相交于点A、E.另一直线y3=x+b与双曲线交于点A、B,与x 2020-10-31 …
(2014?潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A 2020-11-13 …
已知:抛物线与x轴交于点A(-2,0),B(8,0),与y轴交于点C(0,4)25.已知:抛物线与x 2020-11-27 …
已知抛物线y=ax2+bx+8(a>12),过点D(5,3),与x轴交于B(x1,0)、C(x2,0 2020-11-27 …