早教吧作业答案频道 -->数学-->
如图,抛物线y=ax2+3x+c经过A(-1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线
题目详情
如图,抛物线y=ax2+3x+c经过A(-1,0),B(4,0)两点,与y轴交于点C.

(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.

(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.
▼优质解答
答案和解析
解(1)∵抛物线y=ax2+3x+c经过A(-1,0),B(4,0)两点,
∴
.
解得:a=-1,c=4.
∴抛物线的解析式为y=-x2+3x+4.
(2)∵将x=0代入抛物线的解析式得:y=4,
∴C(0,4).
设直线BC的解析式为y=kx+b.
∵将B(4,0),C(0,4)代入得:
,解得:k=-1,b=4
∴直线BC的解析式为:y=-x+4.
过点P作x的垂线PQ,如图所示:

∵点P的横坐标为t,
∴P(t,-t2+3t+4),Q(t,-t+4).
∴PQ=-t2+3t+4-(-t+4)=-t2+4t.
∴m=-t2+4t=-(t-2)2+4(0<t<4).
∴当t=2时,m的最大值为4.
(3)将y=4代入抛物线的解析式得:-x2+3x+4=4.
解得:x1=0,x2=3.
∵点D与点C不重合,
∴点D的坐标为(3,4).
又∵C(0,4)
∴CD∥x轴,CD=3.
∴当BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形.
∴点E(1,0)或(7,0).
∴
|
解得:a=-1,c=4.
∴抛物线的解析式为y=-x2+3x+4.
(2)∵将x=0代入抛物线的解析式得:y=4,
∴C(0,4).
设直线BC的解析式为y=kx+b.
∵将B(4,0),C(0,4)代入得:
|
∴直线BC的解析式为:y=-x+4.
过点P作x的垂线PQ,如图所示:

∵点P的横坐标为t,
∴P(t,-t2+3t+4),Q(t,-t+4).
∴PQ=-t2+3t+4-(-t+4)=-t2+4t.
∴m=-t2+4t=-(t-2)2+4(0<t<4).
∴当t=2时,m的最大值为4.
(3)将y=4代入抛物线的解析式得:-x2+3x+4=4.
解得:x1=0,x2=3.
∵点D与点C不重合,
∴点D的坐标为(3,4).
又∵C(0,4)
∴CD∥x轴,CD=3.
∴当BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形.
∴点E(1,0)或(7,0).
看了 如图,抛物线y=ax2+3x...的网友还看了以下:
求满足以下条件的直线方程:(1)经过两条直线2x-3y+10=0和3x+4y-2=0的交点,且平行 2020-05-17 …
近年来,城市堵车问题越来越严重,结合所学的地理知识完成40-41题.有利于缓解北京交通拥堵的措施是 2020-07-01 …
已知函数f(x)=1+lnx-k(x-2)x,其中k为常数.(1)若k=0,求曲线y=f(x)在点 2020-07-16 …
如图,在△ABC中,AB=AC,点D与E分别是边AC、AB上的点,且DE∥BC,O是BD与CE的交 2020-07-27 …
如图,在△ABC中,AB=AC,点D与E分别是边AC、AB上的点,且DE∥BC,O是BD与CE的交 2020-07-27 …
求下列满足条件的直线的方程(1)经过两条直线2x-3y+10=0和3x+4y-2=0交点,且求下列满 2020-10-31 …
孤立点电荷电场中的一簇等势面如图中虚线所示.其电势分别为φ1、φ2、φ3,其中A、B、C是某电场线与 2020-10-31 …
如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点 2020-10-31 …
如何,直线y=2x十3与x轴相交于点A,与y轴交于点p.(1)求A,B两点的坐标过B点作直线B如何, 2020-11-04 …
如图表示人体肺泡内的气体交换.请据图回答下列问题:(1)人体内气体交换是通过气体的作用完成的.(2) 2020-11-05 …