早教吧作业答案频道 -->数学-->
如图,抛物线y=ax2+3x+c经过A(-1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线
题目详情
如图,抛物线y=ax2+3x+c经过A(-1,0),B(4,0)两点,与y轴交于点C.

(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.

(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.
▼优质解答
答案和解析
解(1)∵抛物线y=ax2+3x+c经过A(-1,0),B(4,0)两点,
∴
.
解得:a=-1,c=4.
∴抛物线的解析式为y=-x2+3x+4.
(2)∵将x=0代入抛物线的解析式得:y=4,
∴C(0,4).
设直线BC的解析式为y=kx+b.
∵将B(4,0),C(0,4)代入得:
,解得:k=-1,b=4
∴直线BC的解析式为:y=-x+4.
过点P作x的垂线PQ,如图所示:

∵点P的横坐标为t,
∴P(t,-t2+3t+4),Q(t,-t+4).
∴PQ=-t2+3t+4-(-t+4)=-t2+4t.
∴m=-t2+4t=-(t-2)2+4(0<t<4).
∴当t=2时,m的最大值为4.
(3)将y=4代入抛物线的解析式得:-x2+3x+4=4.
解得:x1=0,x2=3.
∵点D与点C不重合,
∴点D的坐标为(3,4).
又∵C(0,4)
∴CD∥x轴,CD=3.
∴当BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形.
∴点E(1,0)或(7,0).
∴
|
解得:a=-1,c=4.
∴抛物线的解析式为y=-x2+3x+4.
(2)∵将x=0代入抛物线的解析式得:y=4,
∴C(0,4).
设直线BC的解析式为y=kx+b.
∵将B(4,0),C(0,4)代入得:
|
∴直线BC的解析式为:y=-x+4.
过点P作x的垂线PQ,如图所示:

∵点P的横坐标为t,
∴P(t,-t2+3t+4),Q(t,-t+4).
∴PQ=-t2+3t+4-(-t+4)=-t2+4t.
∴m=-t2+4t=-(t-2)2+4(0<t<4).
∴当t=2时,m的最大值为4.
(3)将y=4代入抛物线的解析式得:-x2+3x+4=4.
解得:x1=0,x2=3.
∵点D与点C不重合,
∴点D的坐标为(3,4).
又∵C(0,4)
∴CD∥x轴,CD=3.
∴当BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形.
∴点E(1,0)或(7,0).
看了 如图,抛物线y=ax2+3x...的网友还看了以下:
求证:√2不是有理数?假设√2是有理数则√2可以写成一个最简分数假设是p/q=√2,p和q互质平方 2020-04-09 …
正方形ABCD中,点P是边CD上的一个动点,过点P作PE⊥BP.(1)如图1,如果PE与BC的延长 2020-05-13 …
已知:inta[]={1,2,3,4,5,6,7,8,9,10,11,12},*p=a则值为3的表 2020-05-13 …
假设有6个作业job1,job2,…,job6; 完成作业的收益数组p=(p[1],p[2],p[3 2020-05-26 …
设C是圆心为O,半径为r的圆,对任意不在圆上的点P作射线OP设C是圆心为O,半径为r的圆,对任意不 2020-06-03 …
已知P在直线l:x+y-1=0上,Q在圆C:(x-2)2+(y-2)2=1上.(1)过P作圆C的切 2020-06-03 …
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.(1)求使直线l和 2020-07-08 …
1、设p、q是两个数,规定:p△q=3×p-(p+q)÷2,求7△(2△4)2、如果1*5=1、设 2020-07-24 …
二阶微分方程求解题目2xy''=y'令p=y',则y''=p'=>2xp'=p=>2*dp/p=dx 2020-11-16 …
已知圆M:x2+(y-4)2=1,直线l:2x-y=0,点P在直线l上,过点P作圆M的切线PA、PB 2020-12-05 …