早教吧作业答案频道 -->数学-->
已知数列{bn}的通项公式为bn=1/4×(2/3)^n-1求证:数列{bn}中的任意三项不可能成等
题目详情
已知数列{bn}的通项公式为bn=1/4×(2/3)^n-1求证:数列{bn}中的任意三项不可能成等
▼优质解答
答案和解析
证:
用反证法.假设数列{bn}中存在三项bk,bm,bp (k≠m≠p)成等差数列,则
2bm=bk+bp
bn=(1/4)×(2/3)^(n-1),随n增大,(2/3)^(n-1)减小,bn减小,数列为递减数列,要三项成等差数列,则m在k与p之间,不妨令k 2×(1/4)×(2/3)^(m-1) =(1/4)×(2/3)^(k-1) +(1/4)×(2/3)^(p-1)
整理,得
2×(2/3)^m=(2/3)^k +(2/3)^p
等式两边同乘以3^p/2^k
2×2^(m-k)×3^(p-m)=3^(p-k)+2^(p-k)
等式左边包含因子2,因此等式左边为偶数,右边3^(p-k)恒为奇数,2^(p-k)为偶数,3^(p-k)+2^(p-k)为奇数,偶数≠奇数,等式不成立,即找不到满足题意的k、m、p,假设错误.
数列{bn}中的任意三项不可能成等差数列.
用反证法.假设数列{bn}中存在三项bk,bm,bp (k≠m≠p)成等差数列,则
2bm=bk+bp
bn=(1/4)×(2/3)^(n-1),随n增大,(2/3)^(n-1)减小,bn减小,数列为递减数列,要三项成等差数列,则m在k与p之间,不妨令k
整理,得
2×(2/3)^m=(2/3)^k +(2/3)^p
等式两边同乘以3^p/2^k
2×2^(m-k)×3^(p-m)=3^(p-k)+2^(p-k)
等式左边包含因子2,因此等式左边为偶数,右边3^(p-k)恒为奇数,2^(p-k)为偶数,3^(p-k)+2^(p-k)为奇数,偶数≠奇数,等式不成立,即找不到满足题意的k、m、p,假设错误.
数列{bn}中的任意三项不可能成等差数列.
看了 已知数列{bn}的通项公式为...的网友还看了以下:
判断以下成什么比例1.甲数的1/3相当于乙数的1/4(甲,乙都不为0),则甲数,乙数成()比例2.甲 2020-03-31 …
数列(高手进)我有数列的题不会A设Sn是等差数列{an}的前n项和,若a5/a3=5/9,则S9/ 2020-04-07 …
数学指数式化简(字母均为正数)要详细过程在线等急!谢谢1>>(5/6)a^(1/3)*b(-2)* 2020-04-27 …
已知A,B,C的对数是a,b,c,且a+b+c=0,证明:A(1/b+1/c)×B(1/a+1/c 2020-05-16 …
对于一个自然数n,如果能找到自然数a和b(ab≠0),使n=a+b+ab,则称n是一个好数对于一个 2020-06-18 …
加法交换律:a+b=b+b加法结合律:a+b+c=a+(b+c)1每份数×份数=总数总数÷每份数= 2020-07-11 …
对于数列若存在常数M>0,对任意的n∈,恒有+…≤M则称数列为B-数列(1)首项为1,公比为q(| 2020-07-22 …
1、a为正实数,i为虚数单位,|(a+i)/i|=2,则a=()A.2B.√3C.√2D.12、设 2020-07-30 …
1.已知自然数a,b,c,满足a^2+b^2+c^2+420,则代数式1/a+1/b+1/c的值为? 2020-10-31 …
一道数学问题下列说法不正确的是().A.数列1,1,1,...是无穷数列.B.数列1,2,3,... 2020-12-24 …