早教吧作业答案频道 -->数学-->
已知函数f(x)=2^∣x-m∣和函数g(x)=x∣x-m∣+2m-8已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;(2)若对任意x1∈(-∞,4],均存
题目详情
已知函数f(x)=2^∣x-m∣和函数g(x)=x∣x-m∣+2m-8
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.
(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;
(2)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围.
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.
(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;
(2)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围.
▼优质解答
答案和解析
f(x)=
2x-m (x≥m)2m-x(x<m),则f(x)的值域应是g(x)的值域的子集.
①当4≤m≤8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调减,[m,+∞)上单调增,
故g(x)≥g(m)=2m-8,
所以2m-4≥2m-8,解得4≤m≤5或m≥6.
②当m>8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,
m2]单调增,[
m2,m]上单调减,[m,+∞)上单调增,g(4)=4m-16>g(m)=2m-8
故g(x)≥g(m)=2m-8,所以2m-4≥2m-8,解得4≤m≤5或m≥6.
③0<m<4时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,故g(x)≥g(4)=8-2m,
所以8-2m≤1,即72≤m<4.
④m≤0时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,
故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
72.(舍去)
综上,m的取值范围是[
72,5]∪[6,+∞).
2x-m (x≥m)2m-x(x<m),则f(x)的值域应是g(x)的值域的子集.
①当4≤m≤8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调减,[m,+∞)上单调增,
故g(x)≥g(m)=2m-8,
所以2m-4≥2m-8,解得4≤m≤5或m≥6.
②当m>8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,
m2]单调增,[
m2,m]上单调减,[m,+∞)上单调增,g(4)=4m-16>g(m)=2m-8
故g(x)≥g(m)=2m-8,所以2m-4≥2m-8,解得4≤m≤5或m≥6.
③0<m<4时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,故g(x)≥g(4)=8-2m,
所以8-2m≤1,即72≤m<4.
④m≤0时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,
故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
72.(舍去)
综上,m的取值范围是[
72,5]∪[6,+∞).
看了 已知函数f(x)=2^∣x-...的网友还看了以下:
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
大虾们!一道小小的简单题..对于函数f(x),g(x),其定义域均为a,b对任意X∈[a,b],总 2020-06-06 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
已知f(x)=xINXg(x)=-x+ax-3(1)对一切x∈(0,+∞),2f(x)≥g(x), 2020-07-23 …
怎样判断函数f(x)=x的平方加1/x的4次方加1,在定义域(负无穷,正无穷)内有界?f(x)的绝 2020-07-25 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
用隐函数求导法则对x^y=y^x求导为什么会得出x^2=y^2x^y=y^x用隐函数求导法则yx^( 2020-10-31 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …
新高一作业数学1.0<x-1/x<12.(x²-9x+11)/(x²-2x+1)≥73.k为何值时, 2021-01-05 …