早教吧作业答案频道 -->数学-->
已知函数f(x)=2^∣x-m∣和函数g(x)=x∣x-m∣+2m-8已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;(2)若对任意x1∈(-∞,4],均存
题目详情
已知函数f(x)=2^∣x-m∣和函数g(x)=x∣x-m∣+2m-8
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.
(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;
(2)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围.
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.
(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;
(2)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围.
▼优质解答
答案和解析
f(x)=
2x-m (x≥m)2m-x(x<m),则f(x)的值域应是g(x)的值域的子集.
①当4≤m≤8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调减,[m,+∞)上单调增,
故g(x)≥g(m)=2m-8,
所以2m-4≥2m-8,解得4≤m≤5或m≥6.
②当m>8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,
m2]单调增,[
m2,m]上单调减,[m,+∞)上单调增,g(4)=4m-16>g(m)=2m-8
故g(x)≥g(m)=2m-8,所以2m-4≥2m-8,解得4≤m≤5或m≥6.
③0<m<4时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,故g(x)≥g(4)=8-2m,
所以8-2m≤1,即72≤m<4.
④m≤0时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,
故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
72.(舍去)
综上,m的取值范围是[
72,5]∪[6,+∞).
2x-m (x≥m)2m-x(x<m),则f(x)的值域应是g(x)的值域的子集.
①当4≤m≤8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调减,[m,+∞)上单调增,
故g(x)≥g(m)=2m-8,
所以2m-4≥2m-8,解得4≤m≤5或m≥6.
②当m>8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,
m2]单调增,[
m2,m]上单调减,[m,+∞)上单调增,g(4)=4m-16>g(m)=2m-8
故g(x)≥g(m)=2m-8,所以2m-4≥2m-8,解得4≤m≤5或m≥6.
③0<m<4时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,故g(x)≥g(4)=8-2m,
所以8-2m≤1,即72≤m<4.
④m≤0时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,
故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
72.(舍去)
综上,m的取值范围是[
72,5]∪[6,+∞).
看了 已知函数f(x)=2^∣x-...的网友还看了以下:
二次函数y=1-6x-3x2的顶点坐标和对称轴方程分别是[]A.顶点(1,4),对称轴x=1B.顶 2020-05-13 …
已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3 2020-05-15 …
已知抛物线y=ax^2-2x+c与他的对称轴交于A(1.-4)与Y轴交于点C,与X轴正半轴交于点B 2020-05-16 …
已知直角坐标系中两点A(K,-2),B(2,T).求下列条件K,T的值,1,点A,B关于X的对称轴 2020-06-12 …
已知抛物线y=x^2-4x+1,将此抛物线沿x轴方向向左平移四个单位长度,得到一条新的抛物线.1. 2020-06-27 …
已知二次涵数图象经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次涵数的解析式 2020-06-29 …
对数函数关于各直线对称的关系式请说明对数函数关于Y轴,X轴,原点,Y=X,Y=-X对称的关系式!如 2020-07-30 …
阅读:对于函数y=ax2+bx+c(a≠0),当t1≤x≤t2时,求y的最值时,主要取决于对称轴x 2020-08-01 …
如图,已知抛物线经过原点O,与x轴交于另一点A,它的对称轴x=2与x轴交于点C,直线y=2x+1经 2020-08-01 …
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0, 2020-12-08 …