早教吧作业答案频道 -->其他-->
已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,将△DEF如图摆放,使得∠D的两条边分别经过点B和点C.(1)当将△DEF如图1摆放时,则∠ABD+∠ACD=度(2)当将△DEF如图2摆放时,请求出∠A
题目详情
已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,将△DEF如图摆放,使得∠D的两条边分别经过点B和点C.
(1)当将△DEF如图1摆放时,则∠ABD+∠ACD=______度
(2)当将△DEF如图2摆放时,请求出∠ABD+∠ACD的度数,并说明理由;
(3)能否将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论______.(填“能”或“不能”)

(1)当将△DEF如图1摆放时,则∠ABD+∠ACD=______度
(2)当将△DEF如图2摆放时,请求出∠ABD+∠ACD的度数,并说明理由;
(3)能否将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论______.(填“能”或“不能”)

▼优质解答
答案和解析
(1)在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°
∴∠ABC+∠ACB=180°-40°=140°
在△BCD中,∠D+∠BCD+∠CBD=180°
∴∠BCD+∠CBD=180°-∠D
在△DEF中,∠D+∠E+∠F=180°
∴∠E+∠F=180°-∠D
∴∠CBD+∠BCD=∠E+∠F=100°
∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°.
故答案为:240°;
(2)∠ABD+∠ACD=40°;
理由如下:
∵∠E+∠F=100°
∴∠D=180°-(∠E+∠F)=80°
∴∠ABD+∠ACD=180°-∠A-∠DBC-∠DCB
=180°-40°-(180°-80°)
=40°;
(3)不能.假设能将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB.则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.
故答案为:不能.
∴∠ABC+∠ACB=180°-40°=140°
在△BCD中,∠D+∠BCD+∠CBD=180°
∴∠BCD+∠CBD=180°-∠D
在△DEF中,∠D+∠E+∠F=180°
∴∠E+∠F=180°-∠D
∴∠CBD+∠BCD=∠E+∠F=100°
∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°.
故答案为:240°;
(2)∠ABD+∠ACD=40°;
理由如下:
∵∠E+∠F=100°
∴∠D=180°-(∠E+∠F)=80°
∴∠ABD+∠ACD=180°-∠A-∠DBC-∠DCB
=180°-40°-(180°-80°)
=40°;
(3)不能.假设能将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB.则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.
故答案为:不能.
看了 已知:在△ABC和△DEF中...的网友还看了以下:
1.A、B、C、D、E五位男生参加比赛,四位旁观者作如下预测:旁观者一:E将取得第三名,A将取得第 2020-05-13 …
(Ⅰ)设A为n阶方阵,E为n阶单位阵,问A满足什么条件时,存在n阶方阵B(≠E),使得AB=A?( 2020-05-14 …
高数 设数列{xn}的一般项sn=1/n cos (npai)/2,求出N 使得当n>N时,xn与 2020-05-16 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
A+足量的H2SO4可得B(部分生成产物略)A+足量的H2SO4可得B,B加X为C,C加X为D,D 2020-06-26 …
A、B、E为矩阵,A=1/2(B+E),当且仅当B^2为何值时,A^2=A?填空题,E应该为单位矩 2020-06-30 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
一道微积分的题目求解.试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x 2020-08-02 …
英语翻译1文章认为A能导致B,但是并没有排除其他原因导致B的可能性,这些其他原因包括C、D、E.当C 2020-12-10 …
试求矩阵B!设A,B为n阶矩阵,2A-B-AB=E,A^2=A,其中E为n阶单位矩阵.已知A=100 2021-02-05 …