早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.求证:(1)F是BC的中点;(2)∠A=∠GEF.
题目详情
如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.
求证:(1)F是BC的中点;
(2)∠A=∠GEF.

求证:(1)F是BC的中点;
(2)∠A=∠GEF.

▼优质解答
答案和解析
证明一:
(1)连接DF,∵∠ACB=90°,D是AB的中点,
∴BD=DC=
AB,(2分)
∵DC是⊙O的直径,
∴DF⊥BC,(4分)
∴BF=FC,即F是BC的中点;(5分)
(2)∵D,F分别是AB,BC的中点,
∴DF∥AC,(6分)
∴∠A=∠BDF,(7分)
∵∠BDF=∠GEF(圆周角定理),(8分)
∴∠A=∠GEF.(9分)
证明二:
(1)连接DF,DE,
∵DC是⊙O直径,
∴∠DEC=∠DFC=90°.(1分)
∵∠ECF=90°,
∴四边形DECF是矩形.
∴EF=CD,DF=EC.(2分)
∵D是AB的中点,∠ACB=90°,
∴EF=CD=BD=
AB.(3分)
∴△DBF≌△EFC.(4分)
∴BF=FC,即F是BC的中点.(5分)
(2)∵△DBF≌△EFC,
∴∠BDF=∠FEC,∠B=∠EFC.(6分)
∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),
∴∠A=∠FEC.(7分)
∵∠FEG=∠BDF(同弧所对的圆周角相等 ),(8分)
∴∠A=∠GEF.(9分)
(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)

(1)连接DF,∵∠ACB=90°,D是AB的中点,
∴BD=DC=
1 |
2 |
∵DC是⊙O的直径,
∴DF⊥BC,(4分)
∴BF=FC,即F是BC的中点;(5分)
(2)∵D,F分别是AB,BC的中点,
∴DF∥AC,(6分)
∴∠A=∠BDF,(7分)
∵∠BDF=∠GEF(圆周角定理),(8分)
∴∠A=∠GEF.(9分)
证明二:
(1)连接DF,DE,
∵DC是⊙O直径,
∴∠DEC=∠DFC=90°.(1分)
∵∠ECF=90°,
∴四边形DECF是矩形.
∴EF=CD,DF=EC.(2分)
∵D是AB的中点,∠ACB=90°,
∴EF=CD=BD=
1 |
2 |

∴△DBF≌△EFC.(4分)
∴BF=FC,即F是BC的中点.(5分)
(2)∵△DBF≌△EFC,
∴∠BDF=∠FEC,∠B=∠EFC.(6分)
∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),
∴∠A=∠FEC.(7分)
∵∠FEG=∠BDF(同弧所对的圆周角相等 ),(8分)
∴∠A=∠GEF.(9分)
(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)
看了 如图,在△ABC中,∠ACB...的网友还看了以下:
如果a,b,c是正数,且满足a+b+c=9,1a+b+1b+c+1c+a=109,那么ab+c+b 2020-06-16 …
在三角形ABC中,a,b,c分别为A,B,C的对边,若2sinA(cosB+cosC)=3(sin 2020-06-17 …
ax^2+bx+c=0有实根,a,b,c为正,证min(a,b,c)小于等于(a+b+c)/4,m 2020-06-22 …
设abc均为正数,且a+b+c=9,则4/a+9/b+16/c之最小值为? 2020-06-24 …
已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则1a+1b=1;②若a=3,则b 2020-07-20 …
已知abc为正数,且a+b+c=9,1/a+b+1/b+c+1/a+c=10/9,求,a/b+c+ 2020-07-30 …
a.b.c.d是有理数,a-b的绝对值小于等于9,c-d的绝对值小于等于16,a-b-c+d的绝对 2020-07-31 …
一道关于数学绝对值的问题已知a,b,c,d是有理数,|a-b|≤9,|c-d|≤16,且|a-b- 2020-07-31 …
24.以下符合C语言语法的赋值表达式是()。A.a=9+b+c=d+924.以下符合C语言语法的赋值 2020-12-31 …
如图是A-B-C-D-E-F是一个滑滑板的轨道截面图,其中AB,DE,EF是线段,B-C-D是一抛物 2021-01-06 …