早教吧作业答案频道 -->数学-->
在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.(1)如图1,若AB=AC,∠BAD=30°,AD=63,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕
题目详情
在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.

(1)如图1,若AB=AC,∠BAD=30°,AD=6
,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;
(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP
(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).

(1)如图1,若AB=AC,∠BAD=30°,AD=6
3 |
(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP
(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).
▼优质解答
答案和解析
(1) ∵∠ADB=90°,∠BAD=30°,AD=6
,
∴cos∠BAD=
,
∴AB=
=
=12,
∴AC=AB=12,
∵点P、M分别为BC、AB边的中点,
∴PM=
AC=6,
(2)如图2,

在截取ED上截取EQ=PD,
∵∠ADB=90°,
∴∠BDP+∠ADE=90°,
∵AD=AE,
∴∠ADE=∠AED,
∵把△ABD绕点A逆时针旋转一定角度,得到△ACE,
∴∠AEC=∠ADB=90°
∵∠AED+∠PEC=90°,
∴∠BDP=∠PEC,
在△BDP和△CEQ中,
,
∴△BDP和△CEQ,
∴BP=CQ,∠DBP=∠QCE,
∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE,
∴∠EPC=∠PQC,
∴PC=CQ,
∴BP=CP
(3)BF2+FC2=2AD2,
理由:如图3,

连接AF,∵EF⊥AC,且AE=EC,
∴FA=FC,∠FAC=∠FCA,
∵EF⊥AC,且AE=EC,
∴∠DAC=∠DCA,DA=DC,
∵AD=BD,
∴BD=DC,
∴∠DBC=∠DCB,
∵∠FAC=∠FCA,∠DAC=∠DCA,
∴∠DAF=∠DCB,
∴∠DAF=∠DBC,
∴∠AFB=∠ADB=90°,
在RT△ADB中,DA=DB,
∴AB2=2AD2,
在RT△ABB中,BF2+FA2=AB2=2AD2,
∵FA=FC
∴BF2+FC2=2AD2.
3 |
∴cos∠BAD=
AD |
AB |
∴AB=
AD |
cos∠BAD |
6
| ||
cos30° |
∴AC=AB=12,
∵点P、M分别为BC、AB边的中点,
∴PM=
1 |
2 |
(2)如图2,

在截取ED上截取EQ=PD,
∵∠ADB=90°,
∴∠BDP+∠ADE=90°,
∵AD=AE,
∴∠ADE=∠AED,
∵把△ABD绕点A逆时针旋转一定角度,得到△ACE,
∴∠AEC=∠ADB=90°
∵∠AED+∠PEC=90°,
∴∠BDP=∠PEC,
在△BDP和△CEQ中,
|
∴△BDP和△CEQ,
∴BP=CQ,∠DBP=∠QCE,
∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE,
∴∠EPC=∠PQC,
∴PC=CQ,
∴BP=CP
(3)BF2+FC2=2AD2,
理由:如图3,

连接AF,∵EF⊥AC,且AE=EC,
∴FA=FC,∠FAC=∠FCA,
∵EF⊥AC,且AE=EC,
∴∠DAC=∠DCA,DA=DC,
∵AD=BD,
∴BD=DC,
∴∠DBC=∠DCB,
∵∠FAC=∠FCA,∠DAC=∠DCA,
∴∠DAF=∠DCB,
∴∠DAF=∠DBC,
∴∠AFB=∠ADB=90°,
在RT△ADB中,DA=DB,
∴AB2=2AD2,
在RT△ABB中,BF2+FA2=AB2=2AD2,
∵FA=FC
∴BF2+FC2=2AD2.
看了 在△ABC中,以AB为斜边,...的网友还看了以下:
要过程)已知圆C:(x-3)的平方+(y-4)的平方=4,直线L1过定点A(1,0),若L1与圆C 2020-05-12 …
已知点O是坐标原点,点A(1,0),若点M(x,y)为平面区域{x+y≥2 ,x≤1,y≤2 }上 2020-05-14 …
已知函数fx=x-a(x+1)ln(x+1)1.当a>0时求fx极值点2.当a=1时若已知函数fx 2020-05-14 …
已知函数f(x)=-1/4x^4+2/3x^3+ax^2-2x-2在区间[-1,1]上单调递减,在 2020-05-15 …
数学题求解答已知函数f(x)=ax^2-4x+2函数g(x)=(1/3)^f(x)①若g(x)有最 2020-07-20 …
设集合A={x丨x²+4x=0},集合B={x丨x²+2(a+1)x+a²-1=0},若B包含于A 2020-07-30 …
高一交集与并集练习1.已知集合A={x|-2≤x≤4},B={x|x>a}①若A∩B≠ø,求实数a 2020-07-30 …
已知圆C:(X-3)^2+(Y-4)^2=4,直线L1过定点A(1.0),若L1与圆C相切,求直线 2020-07-31 …
已知函数f(x)=x-1+a/(e的x次方)(a属于R)当a=1时,若直线y=kx-1与曲线y=f( 2020-12-01 …
已知函数f(x)=e^x-ax-1,a>0(1)若函数f(x)恰有一个零点,证明:a^a=e^(a- 2020-12-26 …