早教吧作业答案频道 -->其他-->
已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG=;(2)如图2,若∠DAB=90°,则∠AFG=;
题目详情
已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.

(1)如图1,若∠DAB=60°,则∠AFG=______;
(2)如图2,若∠DAB=90°,则∠AFG=______;
(3)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明.

(1)如图1,若∠DAB=60°,则∠AFG=______;
(2)如图2,若∠DAB=90°,则∠AFG=______;
(3)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明.
▼优质解答
答案和解析
(1)连接AG.

∵∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中,
,
∴△ADC≌△ABE(SAS),
∴DC=BE,∠ADC=∠ABE.AD=AB.
∵G、F分别是DC与BE的中点,
∴DG=
DC,BF=
BE,
∴DG=BF.
在△ADG和△ABF中,
,
∴△ADG≌△ABF(SAS),
∴AG=AF,∠DAG=∠BAF,
∴∠AGF=∠AFG,∠DAG-∠BAG=∠BAF-∠BAG,
∴∠DAB=∠GAF.
∵∠DAB=60°,
∴∠GAF=60°.
∵∠GAF+∠AFG+∠AGF=180°,
∴∠AFG=60°;
(2)∵∠DAB=90°,∠DAB=∠GAF,(已证)
∴∠GAF=90°,
∵AG=AF,
∴∠AFG=
(180°-90°)=45°;
(3)∵∠DAB=α,∠DAB=∠GAF,(已证)
∴∠GAF=α,
∵AG=AF,
∴∠AFG=
(180°-α);
故答案为 60°,45°,
(180°-α).

∵∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中,
|
∴△ADC≌△ABE(SAS),
∴DC=BE,∠ADC=∠ABE.AD=AB.
∵G、F分别是DC与BE的中点,
∴DG=
1 |
2 |
1 |
2 |
∴DG=BF.
在△ADG和△ABF中,
|
∴△ADG≌△ABF(SAS),
∴AG=AF,∠DAG=∠BAF,
∴∠AGF=∠AFG,∠DAG-∠BAG=∠BAF-∠BAG,
∴∠DAB=∠GAF.
∵∠DAB=60°,
∴∠GAF=60°.
∵∠GAF+∠AFG+∠AGF=180°,
∴∠AFG=60°;
(2)∵∠DAB=90°,∠DAB=∠GAF,(已证)
∴∠GAF=90°,
∵AG=AF,
∴∠AFG=
1 |
2 |
(3)∵∠DAB=α,∠DAB=∠GAF,(已证)
∴∠GAF=α,
∵AG=AF,
∴∠AFG=
1 |
2 |
故答案为 60°,45°,
1 |
2 |
看了 已知△ABC,分别以AB、A...的网友还看了以下:
提示:D-C=0A-B,A-D,D-C,D-E,E-F=1A-D,C-F=2A-B,D-E,E-F 2020-04-06 …
有a、b、c、d、e、f、g七种物质.a为HCl,f的元素质量比为7:3.a能与b、f、d反应,c 2020-05-02 …
mathematica解一元六次方程Solve[{b==f+a,c+d==b,f+g==d,40- 2020-05-16 …
设f(x)具有连续的导数,下列关系式正确的是?A、d∫f(x)dx=f(x)B、∫f`(x)dx= 2020-06-10 …
设D={x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,∬Daln( 2020-06-12 …
若f(x)的导数连续,下列正确的是()A.∫df(x)=f(x)B.∫f,(x)dx=f(x)C. 2020-07-01 …
求理由.下列等式正确的是A.∫f'(x)dx=f(x)B.d∫f(x)dx=f(x)C.∫df(x 2020-07-01 …
设f(x)是增函数,分别指出d>0或d<0时[f(Xo+d)-f(Xo)]/d的符号.设f(x)是 2020-07-09 …
已知集合A{a,b,c,d,e},B{0,1,…2014},f为A→B映射,且满足f(已知集合A{ 2020-07-30 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …