早教吧作业答案频道 -->数学-->
设函数f(x)=2ln(x-1)-(x-1)2.(1)求函数f(x)的单调递增区间;(2)若关于x的方程f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异的实根,求实数a的取值范围.
题目详情
设函数f(x)=2ln(x-1)-(x-1)2.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异的实根,求实数a的取值范围.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异的实根,求实数a的取值范围.
▼优质解答
答案和解析
(1)函数f(x)的定义域为(1,+∞),
∵f′(x)=2[
−(x−1)]=−
,
∵x>1,则使f'(x)>0的x的取值范围为(1,2),
故函数f(x)的单调递增区间为(1,2).
(2)方法1:∵f(x)=2ln(x-1)-(x-1)2,
∴f(x)+x2-3x-a=0⇔x+a+1-2ln(x-1)=0.
令g(x)=x+a+1-2ln(x-1),
∵g'(x)=1-
=
,且x>1,
由g'(x)>0得x>3,g'(x)<0得1<x<3.
∴g(x)在区间[2,3]内单调递减,在区间[3,4]内单调递增,
故f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异实根⇔
即
解得:2ln3-5≤a<2ln2-4.
综上所述,a的取值范围是[2ln3-5,2ln2-4).
方法2:∵f(x)=2ln(x-1)-(x-1)2,
∴f(x)+x2-3x-a=0⇔x+a+1-2ln(x-1)=0.
即a=2ln(x-1)-x-1,令h(x)=2ln(x-1)-x-1,
∵h'(x)=
−1=
,且x>1,
由h'(x)>0得1<x<3,h'(x)<0得x>3.
∴h(x)在区间[2,3]内单调递增,在区间[3,4]内单调递减.
∵h(2)=-3,h(3)=2ln2-4,h(4)=2ln3-5,又h(2)<h(4),
故f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异实根⇔h(4)≤a<h(3).
即2ln3-5≤a<2ln2-4.
综上所述,a的取值范围是[2ln3-5,2ln2-4).
∵f′(x)=2[
1 |
x−1 |
2x(x−2) |
x−1 |
∵x>1,则使f'(x)>0的x的取值范围为(1,2),
故函数f(x)的单调递增区间为(1,2).
(2)方法1:∵f(x)=2ln(x-1)-(x-1)2,
∴f(x)+x2-3x-a=0⇔x+a+1-2ln(x-1)=0.
令g(x)=x+a+1-2ln(x-1),
∵g'(x)=1-
2 |
x−1 |
x−3 |
x−1 |
由g'(x)>0得x>3,g'(x)<0得1<x<3.
∴g(x)在区间[2,3]内单调递减,在区间[3,4]内单调递增,
故f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异实根⇔
|
即
|
综上所述,a的取值范围是[2ln3-5,2ln2-4).
方法2:∵f(x)=2ln(x-1)-(x-1)2,
∴f(x)+x2-3x-a=0⇔x+a+1-2ln(x-1)=0.
即a=2ln(x-1)-x-1,令h(x)=2ln(x-1)-x-1,
∵h'(x)=
2 |
x−1 |
3−x |
x−1 |
由h'(x)>0得1<x<3,h'(x)<0得x>3.
∴h(x)在区间[2,3]内单调递增,在区间[3,4]内单调递减.
∵h(2)=-3,h(3)=2ln2-4,h(4)=2ln3-5,又h(2)<h(4),
故f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异实根⇔h(4)≤a<h(3).
即2ln3-5≤a<2ln2-4.
综上所述,a的取值范围是[2ln3-5,2ln2-4).
看了 设函数f(x)=2ln(x-...的网友还看了以下:
设函数f(x)在x=a处二阶可导,又limf'(x)/(x-a)=-1,则()A.x=a是f(x设函 2020-03-31 …
若函数f(x)对于任意实数x都有f(x)=f(x-a)+f(x+a)(常数a为正整数),则f(x) 2020-05-16 …
4.如果函数f(x)在区间(a,b)内恒有,则在该区间内函数f(x)()A.单调增加B.单调减小C 2020-05-20 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
已知函数f(x)=(2/3)^(|x|-a),求f(x)单调区间,若f(x)的最大值为9/4,求a 2020-06-27 …
x2+|x-a|+1,x∈R,的min①当x≥a时,f(x)=x^2+x+1-a=(x+1/2)^ 2020-06-29 …
设f(x)是定义在R上的单调增函数,证明集合{x|对任意a>0,f(x+a)>f(x-a)}设f( 2020-07-29 …
运用函数抽象式,根据已知条件求周期1)f(x+A)=-f(x)2)f(x+A)=1/f(x)3)f 2020-08-02 …
f(x)=x^2(x-a)若f(x)在(2,3)上单调,则a的范围是若在(2,3)上不单调,则a的范 2020-11-28 …
单单一个∞是指无穷大还是无穷小~F(X->∞)=A是F(X->-∞)=A并且F(X->+∞)=A的充 2021-01-04 …