早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知ABCD为⊙O的内接四边形,E是BD上的一点,且有∠BAE=∠DAC.求证:(1)△ABE∽△ACD;(2)AB•DC+AD•BC=AC•BD.

题目详情
如图,已知ABCD为⊙O的内接四边形,E是BD上的一点,且有∠BAE=∠DAC.
求证:(1)△ABE∽△ACD;(2)AB•DC+AD•BC=AC•BD.
▼优质解答
答案和解析
证明:(1)∵∠ABD=∠ACD,
而∠BAE=∠DAC,
∴△ABE∽△ACD;
(2)连接BC,如图,
∵△ABE∽△ACD,
∴∠1=∠ADC,
而∠ADC+∠ABC=180°,∠1+∠2=180°,
∴∠ABC=∠2,
又∵∠ACB=∠ADE,
∴△ABC∽△AED,
∴AC•DE=AD•BC,
而DE=BD-BE,
∴AC•(BD-BE)=AD•BC,即AC•BD=AC•BE+AD•BC;
又由△ABE∽△ACD,
∴AB•DC=AC•BE,
∴AB•DC+AD•BC=AC•BD.