早教吧作业答案频道 -->数学-->
给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为.(填写序号即可)①矩形;②有一
题目详情
给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.

(1)以下四边形中,是勾股四边形的为___.(填写序号即可)
①矩形;②有一个角为直角的任意凸四边形;③有一个角为60°的菱形.
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,∠DCB=30°,连接AD,DC,CE.
①求证:△BCE是等边三角形;
②求证:四边形ABCD是勾股四边形.

(1)以下四边形中,是勾股四边形的为___.(填写序号即可)
①矩形;②有一个角为直角的任意凸四边形;③有一个角为60°的菱形.
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,∠DCB=30°,连接AD,DC,CE.
①求证:△BCE是等边三角形;
②求证:四边形ABCD是勾股四边形.
▼优质解答
答案和解析
(1)①如图,

∵四边形ABCD是矩形,
∴∠B=90°,
∴AB2+BC2=AC2,
即:矩形是勾股四边形,
②如图,

∵∠B=90°,
∴AB2+BC2=AC2,
即:由一个角为直角的四边形是勾股四边形,
③有一个角为60°的菱形,邻边边中没有直角,所以不满足勾股四边形的定义,
故答案为①②,
(2)①∵△ABC绕点B顺时针旋转了60°到△DBE,
∴BC=BE,∠CBE=60°,
∵在△BCE中,BC=BE,∠CBE=60°
∴△BCE是等边三角形.
②∵△BCE是等边三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=∠DCB+∠BCE=90°,
在Rt△DCE中,有DC2+CE2=DE2,
∵DE=AC,BC=CE,
∴DC2+BC2=AC2,
∴四边形ABCD是勾股四边形.

∵四边形ABCD是矩形,
∴∠B=90°,
∴AB2+BC2=AC2,
即:矩形是勾股四边形,
②如图,

∵∠B=90°,
∴AB2+BC2=AC2,
即:由一个角为直角的四边形是勾股四边形,
③有一个角为60°的菱形,邻边边中没有直角,所以不满足勾股四边形的定义,
故答案为①②,
(2)①∵△ABC绕点B顺时针旋转了60°到△DBE,
∴BC=BE,∠CBE=60°,
∵在△BCE中,BC=BE,∠CBE=60°
∴△BCE是等边三角形.
②∵△BCE是等边三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=∠DCB+∠BCE=90°,
在Rt△DCE中,有DC2+CE2=DE2,
∵DE=AC,BC=CE,
∴DC2+BC2=AC2,
∴四边形ABCD是勾股四边形.
看了 给出如下定义:若一个四边形中...的网友还看了以下:
已知空间两个向量,求向量夹角,并用向量的方式表示.平面两个向量的夹角,可以用内积来计算.现在空间向 2020-05-14 …
如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、 2020-05-17 …
如图,将一副直角三角形叠在一起,使直角顶点重合于点O,则∠AOB=155°,则∠DOC=(),∠C 2020-06-05 …
数学题!1.棱长为1的正棱锥的全面积和体积分别为多少?{填空}2.两平行平面间的间距为10,一直线 2020-06-27 …
已知下列命题:1在△ABC中∠A=∠C-∠B则△ABC为直角三角形2在△ABC中若∠A:∠B:∠C 2020-07-04 …
关于成本计算产品需经两道工序加工,第一道工序工时定额为20小时,第二道工序工时定额为18小时,则第 2020-07-26 …
已知三角形ABC,P为三角形所在平面上的动点点,且点P满足PA·PC+PA·PB+PB·PC=0则 2020-07-30 …
已知a,b是第一象限角,则/2在第几象限? 2020-08-03 …
已知x为第三象限角,则cos2x在第几象限 2020-08-03 …
下列结论:①一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角度数之比为4:3:2;② 2020-12-23 …