早教吧作业答案频道 -->数学-->
(2007•鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出
题目详情
(2007•鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,
∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,

▼优质解答
答案和解析
(1)正方形、长方形、直角梯形.(任选两个均可)
(2)答案如图所示.M(3,4)或M′(4,3).

(3)证明:连接EC,
∵△ABC≌△DBE,
∴AC=DE,BC=BE,
∵∠CBE=60°,
∴EC=BC=BE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
∴DC2+EC2=DE2,
∴DC2+BC2=AC2.
即四边形ABCD是勾股四边形.
(2)答案如图所示.M(3,4)或M′(4,3).

(3)证明:连接EC,
∵△ABC≌△DBE,

∴AC=DE,BC=BE,
∵∠CBE=60°,
∴EC=BC=BE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
∴DC2+EC2=DE2,
∴DC2+BC2=AC2.
即四边形ABCD是勾股四边形.
看了 (2007•鄂尔多斯)我们给...的网友还看了以下:
我们给出如下定义:若一个四边形中存在相邻两边的平方和若一个四边形中存在相邻两边的平方和等于一条对角 2020-05-14 …
勾股定理两边的平方怎么直接算出等于第三边 2020-06-10 …
已知a*b为常数,求a+b什么时候最小,这是个什么定律,公式如何推导出来的当a=b时,a+b最小, 2020-07-21 …
一四两边什么意思 2020-07-29 …
给定四条边的长度,当且仅当该四边形内接于圆时,面积最大?请证明.另,Bretschneider公式 2020-08-03 …
是不是对称的图形就一定会两边一模一样中心对称和轴对称的概念是怎样的有何区别 2020-08-03 …
四边形中,有两条边相等,另两边也相等,则这个四边形()A.一定是平行四边形B.一定不是平行四边形C. 2020-11-03 …
以定点为顶点的一定角两边截规定直线,截得最长线段、最短线段的求法例如,等腰三角形ABC,角A=120 2020-11-28 …
如图所示,一个容器两边各有一个活塞A和B,并可以沿管壁移动,A、B的横截面积之比为2:1,将容器活塞 2020-12-07 …
如图所示,在一细绳C点系住一重物P,细绳两端A、B分别固定在两边墙上,使得AC保持水平,BC与水平方 2020-12-25 …