早教吧作业答案频道 -->数学-->
双曲线x2/a2-y2/b2=1(a>0,b>0)的离心率e=2倍根号3/3,过A(0,-b)双曲线x2/a2-y2/b2=1(a>0,b>0)的离心率e=2倍根号3/3,过点A(0,-b)和B(a,0)的直线与原点间的距离是根号3/2,(1)双曲线的方程(2)直线y=kx+5(k不等于0)
题目详情
双曲线x2/a2-y2/b2=1(a>0,b>0)的离心率e=2倍根号3/3,过A(0,-b)
双曲线x2/a2-y2/b2=1(a>0,b>0)的离心率e=2倍根号3/3,过点A(0,-b)和B(a,0)的直线与原点间的距离是根号3/2,(1)双曲线的方程(2)直线y=kx+5(k不等于0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k的值
双曲线x2/a2-y2/b2=1(a>0,b>0)的离心率e=2倍根号3/3,过点A(0,-b)和B(a,0)的直线与原点间的距离是根号3/2,(1)双曲线的方程(2)直线y=kx+5(k不等于0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k的值
▼优质解答
答案和解析
(1)由题意可得:e=c/a=2√3 /3
∴(a^2+b^2)/a^2 =4/3 ① 设直线方程为x/a -y/b=1,原点到直线的距离为√3 /2
则(ab)/√(x^2 +b^2)=√3 /2 ②
∴(a^2 ·b^2)/(x^2 +b^2)=3/4
由①②得 a=√3,b=1
∴双曲线的方程为:x^2/3-y^2=1.
(2)设C (x1,y1), D(x2,y2)
联立y=kx+m和x^2/3-y^2=1
消去y整理可得(1-3k^2)x^2-6kmx-3m^2-3=0
∵直线y=kx+m(k≠0,m≠0)与该双曲线交于不同的两点C、D
∴△=(-6km)^2-4(1-3k^2)(-3m^2-3)>0,即m^2+1>3k^2,③
∵C、D两点都在以A为圆心的同一圆上,
∴|CA|=|DA|
√[(x1)^2 +(1+y1)^2] =√[(x2)^2 +(1+y2)^2]
∵y1=kx1+m,y2=kx2+m
∴(1+k^2)(x1+x2)+2k(m+1)=0
∵x1+x2=6km/(1-3k^2)
∴(1+k^2) ·6km/(1-3k^2)+2k(m+1)=0
∴4m+1-3k2=0
∵m^2 +1>3k^2>0
∴m^2 +1>4m+1>0
∴-1/4<m<0或m>4
∴(a^2+b^2)/a^2 =4/3 ① 设直线方程为x/a -y/b=1,原点到直线的距离为√3 /2
则(ab)/√(x^2 +b^2)=√3 /2 ②
∴(a^2 ·b^2)/(x^2 +b^2)=3/4
由①②得 a=√3,b=1
∴双曲线的方程为:x^2/3-y^2=1.
(2)设C (x1,y1), D(x2,y2)
联立y=kx+m和x^2/3-y^2=1
消去y整理可得(1-3k^2)x^2-6kmx-3m^2-3=0
∵直线y=kx+m(k≠0,m≠0)与该双曲线交于不同的两点C、D
∴△=(-6km)^2-4(1-3k^2)(-3m^2-3)>0,即m^2+1>3k^2,③
∵C、D两点都在以A为圆心的同一圆上,
∴|CA|=|DA|
√[(x1)^2 +(1+y1)^2] =√[(x2)^2 +(1+y2)^2]
∵y1=kx1+m,y2=kx2+m
∴(1+k^2)(x1+x2)+2k(m+1)=0
∵x1+x2=6km/(1-3k^2)
∴(1+k^2) ·6km/(1-3k^2)+2k(m+1)=0
∴4m+1-3k2=0
∵m^2 +1>3k^2>0
∴m^2 +1>4m+1>0
∴-1/4<m<0或m>4
看了 双曲线x2/a2-y2/b2...的网友还看了以下:
为什么对一些不定积分不能直接使用那对数公式如:∫1/(a^2-x^2)dx对这个函数的不定积分为什 2020-06-10 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
选择题1)直线2x+y+1=0与x+2y-1=0的位置关系是()A.垂直B.相交但不垂直C.平行D 2020-07-29 …
为什么对一些不定积分不能直接使用那对数公式如:∫1/(a^2-x^2)dx对这个函数的不定积分为什 2020-08-01 …
如何看空间中2直线是不是异面直线你说2直线延长线不相交就是异面直线,那么就算知道2条直线是异面直线 2020-08-01 …
过双曲线x^2/a^2-y^2/5-a^2(a>0)右焦点F作一条直线,当直线斜率为2时,过双曲线 2020-08-01 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …