早教吧作业答案频道 -->其他-->
已知定义在R上的函数f(x)满足f(x+4)=f(x),当x∈[0,4]时,f(x)=2|x-m|+n,且f(2)=6.(1)求m,n的值;(2)当x∈[0,4]时,关于x的方程f(x)-a•2x=0有解,求a的取值范围.
题目详情
已知定义在R上的函数f(x)满足f(x+4)=f(x),当x∈[0,4]时,f(x)=2|x-m|+n,且f(2)=6.
(1)求m,n的值;
(2)当x∈[0,4]时,关于x的方程f(x)-a•2x=0有解,求a的取值范围.
(1)求m,n的值;
(2)当x∈[0,4]时,关于x的方程f(x)-a•2x=0有解,求a的取值范围.
▼优质解答
答案和解析
(1)由已知f(0)=f(4),
可得2|m|+n=2|4-m|+n,
∴|m|=|4-m|,
∴m=2
又由f(2)=6可知2|2-2|+n=6,
∴n=5
(2)方程即为2|x-2|+5=a×2x在[0,4]有解.
当x∈[0,2]时,22-x+5=a•2x,
则a=
+
,
令(
)x=t∈[
,1]
则a=4t2+5t在[
,1]单增,
∴a∈[
,9],
当x∈(2,4]时,22-x+5=a•2x,
则a=
+
,
令(
)x=t∈[
,
)
则a=
+5t,
∴a∈[
,
)
综上:a∈[
,9].
可得2|m|+n=2|4-m|+n,
∴|m|=|4-m|,
∴m=2
又由f(2)=6可知2|2-2|+n=6,
∴n=5
(2)方程即为2|x-2|+5=a×2x在[0,4]有解.
当x∈[0,2]时,22-x+5=a•2x,
则a=
4 |
(2x)2 |
5 |
2x |
令(
1 |
2 |
1 |
4 |
则a=4t2+5t在[
1 |
4 |
∴a∈[
3 |
2 |
当x∈(2,4]时,22-x+5=a•2x,
则a=
1 |
4 |
5 |
2x |
令(
1 |
2 |
1 |
16 |
1 |
4 |
则a=
1 |
4 |
∴a∈[
9 |
16 |
3 |
2 |
综上:a∈[
9 |
16 |
看了 已知定义在R上的函数f(x)...的网友还看了以下:
分式方程题啊,1.若x=1是方程(x+2)/(x-1)+(x+3)/(x-2)=m/[(x-1)( 2020-04-25 …
已知方程(m^2-4)x^2+(m+2)x+(m+1)y=m+5,当m为何值时,此方程是一元一次方 2020-05-13 …
帮我解决几道填空题1.关于x的方程m²x²+(2m+3)x+1=0有两个乘积为1的实数根,方程x² 2020-05-20 …
1、若直线L过圆x²+y²+4x-2y=0的圆心M,交椭圆C:x²/9+y²/4=1于A、B两点, 2020-07-25 …
设集合A={(x,y)│(y-3)/(x+2)=m+1},B={(x,y)│(m^2-1)x+(m 2020-07-30 …
关于增根的几道题若方程(x-1)/(x-4)=m/(x-4)有增根,则m的值是多少?若关于x的方程 2020-07-31 …
1、若分式方程(x/x-4)+(m/x-4)=4增根,求m的值2、若方程(x-3/x-1)=2-( 2020-07-31 …
若关于x的方程m/(x-4)-(1-x)/4-x=1有增根,则增根为,m的值为 2020-07-31 …
1、已知:关于x的二次方程m(x^2+2x)-(x-m)=0有两个不相等的实数根.求m的最大整数值2 2020-12-31 …
求解分式方程及应用题四题:若x=-1/5时,分式a(x+1)\2(x+1)的值为-8/5若方程x-1 2021-01-24 …