早教吧作业答案频道 -->其他-->
在f(x)在[0,π]上连续,且满足∫π0min{x,y}f(y)dy=4f(x),求f(x).
题目详情
在f(x)在[0,π]上连续,且满足
min{x,y}f(y)dy=4f(x),求f(x).
∫ | π 0 |
▼优质解答
答案和解析
∵
min{x,y}f(y)dy=
yf(y)dy+x
f(y)dy=4f(x),
由上式知,f(x)在[0,π]上可导,
∴上式两边对x求导得
xf(x)−xf(x)+
f(y)dy=4f′(x)
即
f(y)dy=4f′(x)
∴f(x)在[0,π]上二阶可导
∴再对上式求导,得
-f(x)=4f″(x)
即:4f″(x)+f(x)=0
这是二阶常系数齐次线性微分方程,其特征方程为:4r2+1=0
解得特征根为:r1,2=±
i
∴f(x)=C1cos
+C2sin
…①
又在
min{x,y}f(y)dy=
yf(y)dy+x
f(y)dy=4f(x)中,令x=0,得f(0)=0
代入①得,C1=0
∴f(x)=Csin
,其中C为任意常数.
∫ | π 0 |
∫ | x 0 |
∫ | π x |
由上式知,f(x)在[0,π]上可导,
∴上式两边对x求导得
xf(x)−xf(x)+
∫ | π x |
即
∫ | π x |
∴f(x)在[0,π]上二阶可导
∴再对上式求导,得
-f(x)=4f″(x)
即:4f″(x)+f(x)=0
这是二阶常系数齐次线性微分方程,其特征方程为:4r2+1=0
解得特征根为:r1,2=±
1 |
2 |
∴f(x)=C1cos
x |
2 |
x |
2 |
又在
∫ | π 0 |
∫ | x 0 |
∫ | π x |
代入①得,C1=0
∴f(x)=Csin
x |
2 |
看了 在f(x)在[0,π]上连续...的网友还看了以下:
对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D(m<n),同时满足:①f(x)在[m 2020-04-12 …
物理中的F=UN中的滑动摩擦因素U是怎样测出的?滑动摩擦因素U与F,N无关,与接触面材料有关,我的 2020-05-23 …
一道数列应用题求详解已知函数y=f(x)(x∈R)满足f(x)+f(1-x)=1求(1)f(1/2 2020-06-02 …
已知定义在R上的增函数f(x)满足f(x)>0,且对于任意的m,n∈R都有f(m)•f(n)=f( 2020-06-11 …
已知函数f(x)满足f(1)=a且f(n+1)=﹛(f(n)-1)/f(n)f(n)>1﹛2f(n 2020-06-12 …
函数f(x)对任意x∈R都有f(x)+f(1-x)=½(1)求f(½)和f(1/n)+f[(n-1 2020-06-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
定义在(-1,1)上的函数f(x)满足:f(x)-f(y)=f(x-y1-xy),当x∈(-1,0) 2020-11-03 …
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R,满足f(ab)=af(b)+bf( 2020-11-06 …
(2014•盐城二模)设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,f(n 2020-11-12 …