早教吧作业答案频道 -->数学-->
推导有三个数列项的递推公式的通项公式时,采用化为等比数列的方法,要用2次.第二次怎么迭代?
题目详情
推导有三个数列项的递推公式的通项公式时,采用化为等比数列的方法,要用2次.第二次怎么迭代?
▼优质解答
答案和解析
对一般的数列a(n+2)=pa(n+1)+qa(n)
设a(n+2)+xan(n+1)=y(a(n+1)+xa(n))
化简得 a(n+2)=(y-x)an(n+1)+xya(n)
于是y-x=p
xy=q
将x,y用p,q表示,于是就可以将原数列化为﹛a(n+1)+xa(n)﹜的等比数列,解出a(n+1)+xa(n)的通项后,再用一阶数列的求法求出an的通项
设a(n+2)+xan(n+1)=y(a(n+1)+xa(n))
化简得 a(n+2)=(y-x)an(n+1)+xya(n)
于是y-x=p
xy=q
将x,y用p,q表示,于是就可以将原数列化为﹛a(n+1)+xa(n)﹜的等比数列,解出a(n+1)+xa(n)的通项后,再用一阶数列的求法求出an的通项
看了 推导有三个数列项的递推公式的...的网友还看了以下:
在(1-x^2)^20的展开式中,如果第4r项和第r+2项的二项式系数相等,求r的...在(1-x 2020-06-05 …
多项式a^10-a^9b+a^8b^2-a^7b^3+…-ab^9+b^10第六项和第七项是?多项 2020-07-09 …
已知(12+2x)n.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项 2020-07-11 …
.在二项式的展开式中,(Ⅰ)若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最 2020-07-17 …
在二项式(12+2x)n的展开式中,若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项 2020-07-31 …
已知在(x+3x)n(其中n<15)的展开式中:(1)求二项式展开式中各项系数之和;(2)若展开式 2020-07-31 …
若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中的常数项是()A.第3项B. 2020-07-31 …
代数式的项数是什么1、代数式-x³+3x²y-1/3xy²-xy-3y³的项数是_,第三项是_,第五 2020-11-17 …
1.已知第一个多项式是x平方-xy+y平方,第二个多项式等于第一个多项式的3倍减2,第三个多项式是第 2020-11-24 …
一组数:2,5,8,11,14,…(第一个数2称为第一项,第二个数5称为第二项,以此类推),通过观察 2020-12-28 …