早教吧作业答案频道 -->英语-->
改错Hesmiledatherandlaidherhandonhers.(该代词)改冠词1:Insmallvillagelikethis,everybodyknowseverybodyelse.2:Forlongtimeneitherofusspoketoeachother.3:Look,agirlinblueismycousin.改形容词或副词4:Lookat
题目详情
改错He smiled at her and laid her hand on hers.(该代词)
改冠词
1:In small village like this,everybody knows everybody else.
2:For long time neither of us spoke to each other.
3:Look,a girl in blue is my cousin.
改形容词或副词
4:Look at the asleep boy.How lovely!
5:The fish tastes well,why not have a try?
改介词
6:The chair looks hard,but it is comfortable to sit.
改非谓语动词
7:Modern people know more about health,have better food,and to live in clearer surroundings.
8:The Wotld Health Organization and other organizations are working improve health all over the world.
改冠词
1:In small village like this,everybody knows everybody else.
2:For long time neither of us spoke to each other.
3:Look,a girl in blue is my cousin.
改形容词或副词
4:Look at the asleep boy.How lovely!
5:The fish tastes well,why not have a try?
改介词
6:The chair looks hard,but it is comfortable to sit.
改非谓语动词
7:Modern people know more about health,have better food,and to live in clearer surroundings.
8:The Wotld Health Organization and other organizations are working improve health all over the world.
▼优质解答
答案和解析
1:In (a) small village like this,everybody knows everybody else.2:For (a) long time neither of us spoke to each other.3:Look,(the) girl in blue is my cousin.4:Look at the (sleeping) boy.How lovely!5...
看了 改错Hesmiledathe...的网友还看了以下:
求教工程数学线性代数1若n阶矩阵A为正交矩阵,则A必为可逆矩阵且A-1=A'2若Rank(A)=n 2020-04-12 …
n阶矩阵A=A^2=A^3=… A是否一定等于I或0如题,n阶矩阵A=A^2=A^3=…=任意的A 2020-05-15 …
///////证明 3^n-2^m=(2^k-3^n)a (n m k为自然数 a为大于的整数 n 2020-05-16 …
关于等差数列的简易问题,a(n)=a(1)+(n-1)*d(1)d是差前n项和公式S(n)=n*a 2020-05-19 …
如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数 2020-07-30 …
二项式(n∈)的展开式中,二项式系数最大的项是[]A.第n项B.第n+1项C.第n或第n+1项D. 2020-07-31 …
lim[cos(u/4n)+cos(3u/4n)+.+cos(2n-1)u/4n]/n这里n趋于无穷 2020-11-01 …
若非零实数m,n满足tana-sina=m,tana+sina=n,则cosa=()A.(n-m)/ 2020-12-07 …
特征向量的互推问题A为n阶矩阵,若a是A的特征向量,则可知A*、A逆、A^n的特征向量均为a,但若a 2020-12-28 …
a^n+a^(n-1)+a^(n-2)+……+a^1+a^0这个是什么来着?a^n+a^(n-1)+ 2021-01-04 …