早教吧作业答案频道 -->数学-->
f(x1-x2)=f(x1)f(x2)+1/f(x2)-f(x1),存在f(a)=1,a为正常数求证f(x)是周期函数,且有一个周期是4.
题目详情
f(x1-x2)=f(x1)f(x2)+1/f(x2)-f(x1), 存在f(a)=1,a为正常数 求证f(x)是周期函数,且有一个周期是4.
▼优质解答
答案和解析
纠错:原题表述应该是f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
证明:
∵f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
设x=x1-x2
f(-x)=f(x2-x1)=[f(x2)f(x1)+1]/[f(x1)-f(x2)]
=-[f(x1)f(x2)+1]/[f(x2)-f(x1)]=-f(x1-x2)=-f(x)
∴f(x)是奇函数
又∵f(a)=1,∴f(-a)=-1
f(x-a)=[f(x)+1]/[1-f(x)]
f(x+a)=[-f(x)+1]/[-1-f(x)]=[f(x)-1]/[1+f(x)]=-1/f(x-a)
f(x+2a)=f(x+a+a)=-1/f(x+a-a)=-1/f(x)
f(x-a)=-1/f(x+a)
f(x-2a)=f(x-a-a)=-1/f(x-a+a)=-1/f(x)
∴f(x+2a)=f(x-2a)
∴f(x)是周期函数,4a是一个周期
∴当a取1时,则周期是4,∴该函数有一个周期是4.
证明:
∵f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
设x=x1-x2
f(-x)=f(x2-x1)=[f(x2)f(x1)+1]/[f(x1)-f(x2)]
=-[f(x1)f(x2)+1]/[f(x2)-f(x1)]=-f(x1-x2)=-f(x)
∴f(x)是奇函数
又∵f(a)=1,∴f(-a)=-1
f(x-a)=[f(x)+1]/[1-f(x)]
f(x+a)=[-f(x)+1]/[-1-f(x)]=[f(x)-1]/[1+f(x)]=-1/f(x-a)
f(x+2a)=f(x+a+a)=-1/f(x+a-a)=-1/f(x)
f(x-a)=-1/f(x+a)
f(x-2a)=f(x-a-a)=-1/f(x-a+a)=-1/f(x)
∴f(x+2a)=f(x-2a)
∴f(x)是周期函数,4a是一个周期
∴当a取1时,则周期是4,∴该函数有一个周期是4.
看了 f(x1-x2)=f(x1)...的网友还看了以下:
若函数f(x)对于任意实数x都有f(x)=f(x-a)+f(x+a)(常数a为正整数),则f(x) 2020-05-16 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
设f(x)是定义域在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x属于[0,2] 2020-06-09 …
1.若f(x+m)=f(x-n)恒成立,则f(x)是周期性函数,周期为(m+n)2.若f(x+m) 2020-07-30 …
设是连续函数,是的原函数,则下列结论正确的是:A.当f(x)是奇函数时,F(x)必是偶函数;B当f 2020-08-01 …
关于周期函数积分的问题,有一个定理理解不了,假定周期函数f(x)以T为周期,则f(x)的全体原函数 2020-08-01 …
设f(x)是以T为周期的周期函数,则f(x)的原函数也是周期函数的充要条件是什么?为什么?原函数已 2020-08-02 …
函数周期问题设f(x)在R上有定义,任意R上的x,有f(x+T)=kf(x)(k,t为常数,T>0) 2020-11-16 …
双周的周六是什么意思?急!双数周是什么意思?????????? 2020-11-17 …
定义在实数集R上的函数f(x),对任意x∈,都有f(5+x)=f(5-x),以及f(10+x)+f( 2020-11-20 …