早教吧作业答案频道 -->数学-->
如图所示,三角形ABC是圆O的内接三角形,直径CH垂直于AB,交AC于点D,GHBC的延长线交与点E,∠AOD等于∠E,OD=1,DE=3,求圆的半径
题目详情
如图所示,三角形ABC是圆O的内接三角形,直径CH垂直于AB,交AC于点D,GH BC的延长线交与
点E,∠AOD等于∠E,OD =1,DE=3,求圆的半径
点E,∠AOD等于∠E,OD =1,DE=3,求圆的半径
▼优质解答
答案和解析
1,连接AG,AH,CG
弧AH所对圆心角∠AOD=2∠ACH=2∠AGH
因为GH是直径,在圆内有△GCH是直角三角形有∠BCE=180
所以∠GCB+∠HCE=90 一
因为GH是直径所以△AGH也是是直角三角形
∠AGH+∠AHG=90 二
又直径GH垂直于AB
所以弧AG=BG
所以∠GCB=∠GHA
又有一,二知∠HCE=∠AGH
所以∠DCE=∠AGD+∠DCH=2∠ACH=∠AOD
又有∠ODA=∠CDE
所以△OAD相似于△CED
所以∠OAD=∠E
2,由△OAD相似于△CED
知AD/DE=OD/CD
即AD*CD=DE*OD=3
因为∠AGH=∠DCH,∠ODA=∠CDE
所以△DAG相似于△DHC
AD/DH=DG/DC
即AD*CD=DH*DC=(r+1)(r-1)=3
所以r=2
即圆O的半径为2
弧AH所对圆心角∠AOD=2∠ACH=2∠AGH
因为GH是直径,在圆内有△GCH是直角三角形有∠BCE=180
所以∠GCB+∠HCE=90 一
因为GH是直径所以△AGH也是是直角三角形
∠AGH+∠AHG=90 二
又直径GH垂直于AB
所以弧AG=BG
所以∠GCB=∠GHA
又有一,二知∠HCE=∠AGH
所以∠DCE=∠AGD+∠DCH=2∠ACH=∠AOD
又有∠ODA=∠CDE
所以△OAD相似于△CED
所以∠OAD=∠E
2,由△OAD相似于△CED
知AD/DE=OD/CD
即AD*CD=DE*OD=3
因为∠AGH=∠DCH,∠ODA=∠CDE
所以△DAG相似于△DHC
AD/DH=DG/DC
即AD*CD=DH*DC=(r+1)(r-1)=3
所以r=2
即圆O的半径为2
看了 如图所示,三角形ABC是圆O...的网友还看了以下:
设有关系模式R(A,B,C,D,E,F),若有如下的函数依赖集F={A→B,(C,A)→D, (E, 2020-05-24 …
e^a*e^b等于e^ab吗?e^a-e^b=e^b*(e^(a/b)-1)对吗?那e^a/e^b 2020-06-10 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
设A=(101;020;-101)求满足方程AB+E=A^2+B的矩阵B用AB+E=A^2+B(A 2020-06-18 …
设A,B均为n阶方阵,E为n阶单位阵,且(A-E)(B-E)=0A=E或B=E|A-E|=0或|B 2020-06-18 …
若A与B相似,则A.λE-A=λE-BB.λE+A=λE+B的行列式C.A*=B*D.A^-1=B 2020-07-16 …
在球坐标系中,已知矢量A=e(r)a+e(θ)b+e(φ)c,其中a、b和c均为常数.(1)问矢量 2020-07-21 …
如图,长方形框架ABCD-A′B′C′D′,三边AB、AD、AA′的长分别为6、8、3.6,AE与底 2020-11-02 …
C语言运算6、若有代数式,则不正确的C语言表达式是(C).A.a/b/c*e*3B.3*a*e/b/ 2020-12-23 …
e^3b-e^3a/e^b-e^a化为e^2a+e^2b+e^a*e^b的运算过程如题 2021-01-15 …