早教吧作业答案频道 -->其他-->
如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作∠CPD=∠APB,交x轴于点D,交y轴于点E,过点E作EF∥AP交x轴于点F.
题目详情
如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作∠CPD=∠APB,交x轴于点D,交y轴于点E,过点E作EF∥AP交x轴于点F.
(1)若△APD为等腰直角三角形,求点P的坐标;
(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.

(1)若△APD为等腰直角三角形,求点P的坐标;
(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.

▼优质解答
答案和解析
(1)如图1,∵△APD为等腰直角三角形,
∴∠APD=90°,
∴∠PAD=∠PDA=45°,
又∵四边形ABCD是矩形,
∴OA∥BC,∠B=90°,AB=OC,
∴∠1=∠2=45°,
∴AB=BP,
又∵OA=3,OC=2,
∴BP=2,CP=1,
∴P(1,2),

(2)如图2∵四边形APFE是平行四边形,
∴PD=DE,
∵OA∥BC,
∴∠CPD=∠4,∠1=∠3,
∵∠CPD=∠1,
∴∠3=∠4,
∴PD=PA,
过P作PM⊥x轴于M,
∴DM=MA,
又∵∠PDM=∠EDO,∠PMD=∠EOD=90°,
在△PDM与△EDO中,
,
∴△PDM≌△EDO(AAS),
∴OD=DM=MA=1,EO=PM=2,
∴P(2,2),E(0,-2),
∴PE的解析式为:y=2x-2;

∴∠APD=90°,
∴∠PAD=∠PDA=45°,
又∵四边形ABCD是矩形,
∴OA∥BC,∠B=90°,AB=OC,
∴∠1=∠2=45°,
∴AB=BP,
又∵OA=3,OC=2,
∴BP=2,CP=1,
∴P(1,2),

(2)如图2∵四边形APFE是平行四边形,
∴PD=DE,
∵OA∥BC,
∴∠CPD=∠4,∠1=∠3,
∵∠CPD=∠1,
∴∠3=∠4,
∴PD=PA,
过P作PM⊥x轴于M,
∴DM=MA,
又∵∠PDM=∠EDO,∠PMD=∠EOD=90°,
在△PDM与△EDO中,
|
∴△PDM≌△EDO(AAS),
∴OD=DM=MA=1,EO=PM=2,
∴P(2,2),E(0,-2),
∴PE的解析式为:y=2x-2;
看了 如图,矩形OABC摆放在平面...的网友还看了以下:
如图,把含有45°角的三角板顶点C放在y轴上,三角板斜边AB放在x轴上,AB=4,抛物线l经过三角 2020-04-26 …
已知抛物线的顶点时坐标原点o,焦点F在x轴正半轴上,过F的直线l与抛物线交于A、B两点,且满足向量 2020-04-27 …
问两个高中三角函数的小问题~⑴所有终边落在x轴上的角的集合:S={β│β=180°·k,k∈Z}⑵ 2020-06-14 …
下列表示不正确的是[]A.终边在x轴上的角的集合是{α|α=kπ,k∈Z}B.终边在y轴上的角的集 2020-06-14 …
菱形的两条对角线分别等于8和6,并且分别放置在X轴Y轴上,对角线的交点和原点重合.求各边所在的直线 2020-07-12 …
如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线.将直线平移 2020-07-15 …
1.双曲线mx^2+y^2=1的虚轴长是实轴长的2倍,则m=2.求适合下列条件的双曲线的标准方程( 2020-07-30 …
初三数学.直角三角形OAB的斜边OA在x轴的正半轴上,直角顶点B在第一象限内,已知点A(10,0), 2020-11-07 …
三角形AOB的顶点A,B在二次函数Y=-1/3X^2+bX+3/2的图像上,又点A,B分别在Y和X轴 2020-11-18 …
终边落在x轴的非正半轴上的角的集合为{x/x=k.360°}这个可以理解为终边落在x轴的非正半轴上的 2021-02-04 …