早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(Ⅰ)证明:an+2-an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.
题目详情
已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数. (Ⅰ)证明:an+2-an=λ (Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.
▼优质解答
答案和解析
(1)证明:由题设,anan+1=λSn-1,an+1an+2=λSn+1-1,
两式相减得an+1(an+2-an)=λan+1.
因为an+1≠0,所以an+2-an=λ.
(2)由题设,a1=1,a1a2=λS1-1,可得 a2=λ-1,
由(1)知,a3=λ+1.
若{an}为等差数列,则2a2=a1+a3,解得λ=4,故an+2-an=4.
由此可得{a2n-1}是首项为1,公差为4的等差数列,
a2n-1=4n-3;
{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.
所以an=2n-1,an+1-an=2.
因此存在λ=4,使得数列{an}为等差数列.
两式相减得an+1(an+2-an)=λan+1.
因为an+1≠0,所以an+2-an=λ.
(2)由题设,a1=1,a1a2=λS1-1,可得 a2=λ-1,
由(1)知,a3=λ+1.
若{an}为等差数列,则2a2=a1+a3,解得λ=4,故an+2-an=4.
由此可得{a2n-1}是首项为1,公差为4的等差数列,
a2n-1=4n-3;
{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.
所以an=2n-1,an+1-an=2.
因此存在λ=4,使得数列{an}为等差数列.
看了 已知数列{an}的前n项和为...的网友还看了以下:
已知等差数列{an}的项数为偶数,且公差d=1,且奇数的和为44,偶数项的和为33,则此数列的中间 2020-05-15 …
已知{an}是等差数列,项数为奇数,奇数项和为44,偶数项和为33,求数列得中间项和项数.设项数为 2020-06-03 …
请问.等差数列中.知道公差d,知道总和S,知道首项a1,请问怎样求项数还有末项或者知道公差,总和, 2020-07-08 …
请问.等差数列中.知道公差d,知道总和S,知道首项a1,请问怎样求项数还有末项或者知道公差,总和, 2020-07-08 …
1.已知在等差数列{an}中,a1<0,S25=S45,若Sn最小,求n.2.在等差数列{an}中 2020-07-09 …
已知数列:1/1,2/1,1/2,3/1,2/2,1/3,4/1,3/2,2/3,1/4,…,依它 2020-07-10 …
1.在等比数列{an}中,已知a3+a8=124,a4a7=-512且公比为整数,求a102.在等 2020-07-30 …
1.7个实数排成一排,奇数项成等差数列,偶数项成等比数列,且奇数项的和减去偶数项的积,其差为42,首 2020-11-18 …
问几道数学题已知数列{an}的通项公式an=(n+1)(n+2)(1)若an=9900,问an是第几 2020-12-24 …
1、数列{an}中,已知a1=3,a7=15,且知其通项公式是关于项数n的一次函数.(1)求此数列的 2021-02-09 …