早教吧作业答案频道 -->数学-->
如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=-2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AO
题目详情
如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.

(1)若直线AB解析式为y=-2x+12,直线OC解析式为y=x,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.

(1)若直线AB解析式为y=-2x+12,直线OC解析式为y=x,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
▼优质解答
答案和解析
(1)①由题意,
(2分)
解得
所以C(4,4)(3分)
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
×6×4=12.(6分)
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=12÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
|
解得
|
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
| 1 |
| 2 |
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,

∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=12÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
怎样用导数数解一个函数有三个实根?例如,已知函数f(x)=x³-6x+5,X∈R.若关怎样用导数数 2020-04-26 …
若关于x的分式方程(x-a)/(x-1) -3/x=1无解,则a=两边乘x(x-1)x(x-a)- 2020-05-15 …
先阅读材料,再解答问题解关于x的不等式:k(2x+1)>x+2 去括号,得2kx+k>x+2移项, 2020-05-17 …
阅读如下解题过程:若(x^2+y^2)^4-2(x^2+y^2)^2+1=0,求x^2+y^2的值 2020-05-19 …
阅读如下解题过程:若(x^2+y^2)^4-2(x^2+y^2)^2+1=0,求x^2+y^2的值 2020-05-19 …
一道数学题得到正解悬赏40下列说法:①若a=b,则a/(x²+1)=b/(x²+1②若(a-2)x 2020-06-27 …
二元一次方程如何解?1.若x+3y=3x+2y=7,则x+y=几?2.若关于x,y的二元一次方程组{ 2020-10-31 …
二项分布问题U服从二项分布B(2,1/2),有一个随机变量X满足(X=-1,若U≤0),(X=1,若 2020-10-31 …
解不等式:|x-1|+|x-3|>4.由,得;由,得;①若x>1,不等式可变为-(x-1)-(x-3 2020-12-05 …
因式分解有一种方法,专门解下降次方程的例如X的四次方—x的三次方+x的二次方+2请分解给我看.说说方 2021-01-03 …