早教吧作业答案频道 -->数学-->
请高手们来指教下!1.若实数a.b.c满足a^2+b^2不等于0,a^3+a^2c-abc+b^2c+b^3等于0,则a+b+c的值是.A-1.B0.C1D22.当5个整数从小到大排列时,中位数是4,如果这5个数整数的唯一众数是6,则这5个证
题目详情
请高手们来指教下!
1.若实数a.b.c满足a^2+b^2不等于0,a^3+a^2c-abc+b^2c+b^3等于0,则a+b+c的值是____________.A -1 .B 0 .C 1 D 2
2.当5个整数从小到大排列时,中位数是4,如果这5个数整数的唯一众数是6,则这5个证书的和最大是__________.A.20 B.21 C.22 D.23
3.在三角形ABC中,角A等于60度,AC=16,S三角形ABC=220又根号3.则AB=______.A.4分之55又根号3 B.55 C.45 D.55又根号3
1.若实数a.b.c满足a^2+b^2不等于0,a^3+a^2c-abc+b^2c+b^3等于0,则a+b+c的值是____________.A -1 .B 0 .C 1 D 2
2.当5个整数从小到大排列时,中位数是4,如果这5个数整数的唯一众数是6,则这5个证书的和最大是__________.A.20 B.21 C.22 D.23
3.在三角形ABC中,角A等于60度,AC=16,S三角形ABC=220又根号3.则AB=______.A.4分之55又根号3 B.55 C.45 D.55又根号3
▼优质解答
答案和解析
1.B.0
解
a^3+a^2c-abc+b^2c+b^3=(a^3+b^3)+(a^2c+b^2c)-abc=(a^2+b^2-ab)*(a+b+c)=0,因为a^2+b^2-ab不等于0,所以a+b+c=0
2.B.21
解 因为众数唯一是6,所以6有两个,其他数只有一个.又当5个整数从小到大排列时,中位数是4,所以其它两数最大是3,2.所以和最大是6+6+4+3+2
3. B.55
解 ,S三角形ABC=(1/2)*AB*AC*sinA=220又根号3
所以AB=55
解
a^3+a^2c-abc+b^2c+b^3=(a^3+b^3)+(a^2c+b^2c)-abc=(a^2+b^2-ab)*(a+b+c)=0,因为a^2+b^2-ab不等于0,所以a+b+c=0
2.B.21
解 因为众数唯一是6,所以6有两个,其他数只有一个.又当5个整数从小到大排列时,中位数是4,所以其它两数最大是3,2.所以和最大是6+6+4+3+2
3. B.55
解 ,S三角形ABC=(1/2)*AB*AC*sinA=220又根号3
所以AB=55
看了 请高手们来指教下!1.若实数...的网友还看了以下:
1.若a为任意实数,一次函数y=ax-2a+1的图像必经过一定点,则此定点的坐标为:A.(2,1) 2020-04-08 …
0.00002413用科学计数法表示(保留2个有效数字)下列结论中正确的是A任何一个实数的两个平方 2020-05-14 …
已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意实数x≥0,都有f(x+2)=f(x) 2020-05-23 …
已知实数a≠0,函数f(x)=a(x-2)2+2lnx,g(x)=f(x)-4a+14a.(1)当 2020-06-08 …
已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x 2020-06-09 …
若f(x)是定义在R上的奇函数,且对任意的实数x≥0,总有正常数T,使得f(x+T)=f(x)+T 2020-06-12 …
如果一个实数的平方根与它的立方根相等,则这个数是()A.0B.正实数C.0和1D.1 2020-06-13 …
怎样在(0,1)开区间与[0,1]闭区间之间做一一对应?怎样将(0,1)区间所有实数与[0,1]区 2020-06-23 …
已知函数fx=x²-1gx=a|x-1|已知函数fx=x²-1gx=a|x-1|《1》若函数y=| 2020-06-27 …
若存在实数a,对任意实数x∈(0,m],均有($inx一a)(c0sx一a)≤0,则实数m的最大 2020-07-09 …