早教吧作业答案频道 -->其他-->
已知:抛物线y=ax2+bx+c(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,−32),与x轴交于A、B两点(A在B的左边).(1)求此抛物线的表达式;(2)点P是线段OB上一动点(不与点B重合)
题目详情
已知:抛物线y=ax2+bx+c(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,−| 3 |
| 2 |
(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=
| ||
| 2 |
(3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由;
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.
▼优质解答
答案和解析
(1)∵抛物线的顶点为M(1,-2)可设y=a(x-1)2-2,
由点(0,−
)得:a−2=−
,
∴a=
.
∴
=
,即y=
x2−x−
.
(2)在x2=3中,由y=0,得
x2−x−
=0,
解得:x1=-1,x2=3,
∴A为(-1,0),B为(3,0).
∵M(1,-2),
∴∠MBO=45°,MB=2
,
∴∠MPQ=45°∠MBO=∠MPQ,
又∵∠M=∠M,
∴△MPQ∽△MPB,
∴
=
,
∴MP2=MB⋅MQ,
即22+(x−1)2=2
•
y1,
∴y1=
(x−1)2+2(0≤x<3).

(3)①存在点Q,使QP=QB,即△PQB是以PB为底的等腰三角形,
作PB的垂直平分线交BM于Q,则QP=QB.
∴∠QPB=∠MBP=45°
又∵∠MPQ=45°,
∴此时MP⊥x轴,
∴P为(1,0),
∴PB=2.
∴Q的坐标为(2,-1).
②使△BMF是等腰三角形的F点有:
F1(1,0),F2(1,−2+2
由点(0,−
| 3 |
| 2 |
| 3 |
| 2 |
∴a=
| 1 |
| 2 |
∴
| MP |
| MB |
| MQ |
| MP |
| 1 |
| 2 |
| 3 |
| 2 |
(2)在x2=3中,由y=0,得
| 1 |
| 2 |
| 3 |
| 2 |
解得:x1=-1,x2=3,
∴A为(-1,0),B为(3,0).
∵M(1,-2),
∴∠MBO=45°,MB=2
| 2 |
∴∠MPQ=45°∠MBO=∠MPQ,
又∵∠M=∠M,
∴△MPQ∽△MPB,
∴
| MP |
| MB |
| MQ |
| MP |
∴MP2=MB⋅MQ,
即22+(x−1)2=2
| 2 |
| ||
| 2 |
∴y1=
| 1 |
| 2 |

(3)①存在点Q,使QP=QB,即△PQB是以PB为底的等腰三角形,
作PB的垂直平分线交BM于Q,则QP=QB.
∴∠QPB=∠MBP=45°
又∵∠MPQ=45°,
∴此时MP⊥x轴,
∴P为(1,0),
∴PB=2.
∴Q的坐标为(2,-1).
②使△BMF是等腰三角形的F点有:
F1(1,0),F2(1,−2+2
作业帮用户
2017-10-31
|
看了 已知:抛物线y=ax2+bx...的网友还看了以下:
初二下学期分解因式[数学]1.a(x-y)-b(y-x)+c(x-y)2.x(m+n)-y(n+m) 2020-03-31 …
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
题:x=1.96,y=2.56求x-2√xy+y/√x-√y(me有个疑问请往下看)答案:x=1. 2020-05-20 …
x+y=(x+y)*1=(x+y)*(1/x+9/y)=1+9+y/x+9x/y=10+y/x+9 2020-05-20 …
方程啊~~~~~~~~20分!1000(1—80%)=(1—50%)y求y8×10%+y=(8+y 2020-07-17 …
谁帮我做因式分解1)5m2n-15mn22)-7x3y2-21x2y33)-15xy-5x24)5 2020-07-19 …
人的多种生理生化过程都表现出一定的昼夜节律.研究表明,下丘脑SCN细胞中PER基因表达与此生理过程 2020-07-26 …
1..设x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x*2/a*2+y*2/b*2+z 2020-10-30 …
主族元素X、Y、Z的离子的电子层结构相同,原子半径X>Z,离子Y>X,Y和Z能形成离子化合物,由此可 2020-12-07 …
下列各组中,两个函数为同一个函数的是()A.y=cosx,y=√1-sin²xB.y=s下列各组中, 2020-12-08 …
扫描下载二维码