早教吧 育儿知识 作业答案 考试题库 百科 知识分享

平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.

题目详情
平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.
▼优质解答
答案和解析
证明:假设A、B,C、D四点,任选三点构成的三角形的三个内角都大于45°,
当ABCD构成凸四边形时,可得各角和大于360°,与四边形内角和等于360°矛盾;
当ABCD构成凹四边形时,可得三角形内角和大于180°,与三角形内角和等于180°矛盾.
故在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.