早教吧作业答案频道 -->数学-->
an=1/(3n-2)(3n+1),求Sn不要给我直接来个根据裂项法怎么裂的项也就是怎么变成an=1/3[1/(3n-2)-1/(3n+1)]
题目详情
an=1/(3n-2)(3n+1),求Sn
不要给我直接来个根据裂项法
怎么裂的项也就是怎么变成an=1/3[1/(3n-2)-1/(3n+1)]
不要给我直接来个根据裂项法
怎么裂的项也就是怎么变成an=1/3[1/(3n-2)-1/(3n+1)]
▼优质解答
答案和解析
1/(3n-2)-1/(3n+1)(通分)
=(3n+1)/(3n-2)(3n+1)-(3n-2)/(3n-2)(3n+1)
=(3n+1-3n+2)/(3n-2)(3n+1)
=3/(3n-2)(3n+1)
1/3*3/(3n-2)(3n+1)=1/(3n-2)(3n+1)
所以1/3*[1/(3n-2)-1/(3n+1)]=1/(3n-2)(3n+1)
Sn=1/1*4+1/4*7+1/7*10+.+1/(3n-2)(3n+1)
=1/3*(1-1/4)+1/3*(1/4-1/7)+1/3*(1/7-1/10)+.+1/3*[1/(3n-2)-1/(3n+1)]
=1/3*[1-1/4+1/4-1/7+1/7-1/10+.+1/(3n-2)-1/(3n+1)]
=1/3*[1-1/(3n+1)]
=1/3*[3n/(3n+1)]
=n/(3n+1)
=(3n+1)/(3n-2)(3n+1)-(3n-2)/(3n-2)(3n+1)
=(3n+1-3n+2)/(3n-2)(3n+1)
=3/(3n-2)(3n+1)
1/3*3/(3n-2)(3n+1)=1/(3n-2)(3n+1)
所以1/3*[1/(3n-2)-1/(3n+1)]=1/(3n-2)(3n+1)
Sn=1/1*4+1/4*7+1/7*10+.+1/(3n-2)(3n+1)
=1/3*(1-1/4)+1/3*(1/4-1/7)+1/3*(1/7-1/10)+.+1/3*[1/(3n-2)-1/(3n+1)]
=1/3*[1-1/4+1/4-1/7+1/7-1/10+.+1/(3n-2)-1/(3n+1)]
=1/3*[1-1/(3n+1)]
=1/3*[3n/(3n+1)]
=n/(3n+1)
看了 an=1/(3n-2)(3n...的网友还看了以下:
3+5+7+9+.2n—1这个数列有多少项啊他的SN表达式是什么我做不出来代进去不行啊.还有怎么判 2020-04-09 …
一个正项等比数列{an}的前n项和为2,其后2n项的和为12,则再后面3n项的和为()A.-378 2020-06-14 …
数列1,4,7,10,…,3n+1怎么看它共有多少项如题 2020-07-11 …
1.一个等差数列共有3n项,若前2n项的和为100,后2n项的和为200,则中间n项的和为()2. 2020-07-11 …
1.在等比数列{an}中,an>0,且,a2=1-a1,a4=9-a3,则a4+a5等于——272 2020-07-18 …
能被3整除余2用描述法应该是3n+2啊.答案是3n-1怎么回事?3n-1怎么来的? 2020-08-01 …
已知数列{an}是等差数列,a2=8,a8=26,从{an}中依次取出第3项,第9项,第27项,…, 2020-10-31 …
要使(2+m)乘以x的3次方+(3n-1)乘以x乘以y的2次方+y不含三次项,怎样简化? 2020-11-20 …
设数列{an}满足a1=2,(n∈N*).(1)求数列{an}的通项公式;(2)去掉数列{an}中的 2021-02-09 …
(2014•滨州二模)设等差数列{an}的前n项和为Sn,已知a2=2,S7=28,(Ⅰ)求数列{a 2021-02-09 …