早教吧作业答案频道 -->数学-->
在平行四边形ABCD中,AB=6,AD=9,角BAD的平分线交BC于点E,交DC的延长线于点F,BG垂直AE,垂足为G,BG=4根2,则三角形CEF的周长为多少?
题目详情
在平行四边形ABCD中,AB=6,AD=9,角BAD的平分线交BC于点E,交DC的延长线于点F,BG垂直AE,垂足为G,BG=4根2,则三角形CEF的周长为多少?
▼优质解答
答案和解析
因为 AE是∠BAD的平分线
所以 ∠BAE=∠DAE
因为 AD‖BC
所以 ∠DAE=∠AEB(两直线平行,内错角相等)
所以 ∠BAE=∠AEB
所以 △BAE是等腰三角形,BE=AB=6,CE=BC-BE=9-6=3
因为 BG⊥AE,∠BGE=90
所以 BG是等腰三角形BAE底边AE的垂直平分线
所以 G是AE的中点,AG=GE
因为 直角三角形ABG中,由勾股定理有AB^2=AG^2+BG^2
所以 AG^2= AB^2-BG^2=36-32=4
AG=GE=2
取CD中点H,连结GH,EH,则CH=DH=3
因为 AD‖CE,且G是AE的中点,H是CD的中点
所以 AD‖GH‖CE,且2GH=AD+CE=9+3=12,GH=6
因为 GH‖BE,GH=BE=6
所以 四边形BEHG是平行四边形
所以 BG‖EH
所以 ∠BGE=∠AEH(两直线平行,内错角相等)=90,即EH⊥AE
因为 ∠F=∠BAE(两直线平行,内错角相等)
∠EGH=∠DAE(两直线平行,同位角相等)
所以 ∠F=∠EGH
所以 △HGF是等腰三角形,FH=GH=6,CF=HF-CH= 6-3=3,
所以 EH是等腰三角形HFG底边GF的垂直平分线
所以 E是GF的中点,EF=GE=2
于是 △CEF的周长=CE+CF+EF=3+3+2=8
所以 ∠BAE=∠DAE
因为 AD‖BC
所以 ∠DAE=∠AEB(两直线平行,内错角相等)
所以 ∠BAE=∠AEB
所以 △BAE是等腰三角形,BE=AB=6,CE=BC-BE=9-6=3
因为 BG⊥AE,∠BGE=90
所以 BG是等腰三角形BAE底边AE的垂直平分线
所以 G是AE的中点,AG=GE
因为 直角三角形ABG中,由勾股定理有AB^2=AG^2+BG^2
所以 AG^2= AB^2-BG^2=36-32=4
AG=GE=2
取CD中点H,连结GH,EH,则CH=DH=3
因为 AD‖CE,且G是AE的中点,H是CD的中点
所以 AD‖GH‖CE,且2GH=AD+CE=9+3=12,GH=6
因为 GH‖BE,GH=BE=6
所以 四边形BEHG是平行四边形
所以 BG‖EH
所以 ∠BGE=∠AEH(两直线平行,内错角相等)=90,即EH⊥AE
因为 ∠F=∠BAE(两直线平行,内错角相等)
∠EGH=∠DAE(两直线平行,同位角相等)
所以 ∠F=∠EGH
所以 △HGF是等腰三角形,FH=GH=6,CF=HF-CH= 6-3=3,
所以 EH是等腰三角形HFG底边GF的垂直平分线
所以 E是GF的中点,EF=GE=2
于是 △CEF的周长=CE+CF+EF=3+3+2=8
看了 在平行四边形ABCD中,AB...的网友还看了以下:
下列说法,正确的有:A 延长直线AB B 延长线段BC C 延长射线OA D 画直线 在射线AB上 2020-05-15 …
一元二次方程 -若c(c不等于0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为( 2020-05-16 …
菱形ABCD的两条对角线相交于点O,AC=4.2,BD=3,分别在线段OA,OB.OC.OD,上取 2020-05-17 …
b.c.d三港口封冻期由长到短排序正确的是A.c>d.>b B.d>c>b C.c>b>d D.b> 2020-05-24 …
四边形ABCD全等于A'B'C'D',而且AB:BC:CD:DA=1:1/2:2/3:2,若四边形 2020-06-03 …
一题几何选择题~SOS题目:一个四边形的边长依次是A,B,C,D.且A*A+B*B+C*C+D*D 2020-06-05 …
如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程|x+9|=1 2020-06-12 …
如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程|x+9|=1 2020-06-12 …
请教一下数据库里的关系题1、在关系模式R(A,B,C,D)中,有函数依赖集F={B→C,C→D,D→ 2020-11-03 …
“我们可以得到A和B分别与C、D、E之间的关系”这句话用英语怎么表达“我们可以得到A和B分别与C、D 2020-12-25 …