早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道高数题对任意的x、y有f(x+y)=e^yf(x)+e^xf(y);并且f(x)在x=0处的导函数值等于2,求f(x)的表达式

题目详情
一道高数题
对任意的x、y有
f(x+y)=e^yf(x)+e^xf(y);
并且f(x)在x=0处的导函数值等于2,求f(x)的表达式
▼优质解答
答案和解析
令x=y=0得f(0)=0
f(x+h)=e^x×f(h)+e^h×f(x)
f(x+h)-f(x)=(e^h-1)×f(x)+e^x×f(h)=(e^h-1)×f(x)+e^x×(f(h)-f(0))
f'(x)
=lim(h→0) [f(x+h)-f(x)]/h
=lim(h→0) (e^h-1)/h×f(x)+lim(h→0) e^x×(f(h)-f(0))/h
=f(x)+e^x×f'(0)
=f(x)+2e^x
此微分方程是一阶线性方程,套用通解公式得f(x)=Ce^x+2(x+1)e^x,C是任意常数. 由f(0)=0得C=-2
所以f(x)=2xe^x