早教吧作业答案频道 -->数学-->
如图,△ABC中,M是其内一点,∠ABC=60°,∠MBC=20°,CM平分∠ACB,且∠ACB=20°,求∠BAM的度数.
题目详情
如图,△ABC中,M是其内一点,∠ABC=60°,∠MBC=20°,CM平分∠ACB,且∠ACB=20°,求∠BAM的度数.


▼优质解答
答案和解析
如图,过B在三角形外作∠ABN=20°,使BN交CA的延长线于N,连接MN,
∵∠ABC=60°,∠MBC=20°,
∴∠NBC=∠ABC+∠ABN=60°+20°=80°,
∠BNC=180°-∠ACB-∠NBC=180°-20°-80°=80°,
∴∠BNC=∠NBC,
∴BC=NC,
∵CM平分∠ACB,
∴∠ACM=∠BCM,
在△NMC与△BMC中,
,
∴△NMC≌△BMC(SAS),
∴∠ANM=∠MBC=20°,
又∵∠MBN=∠ABC-∠MBC+∠ABN=60°-20°+20°=60°,
∠BNM=∠BNC-∠ANM=80°-20°=60°,
∴∠MBN=∠BNM=60°,
∴△BMN是等边三角形,BM=BN,
又∠BAN=180°-∠BNC-∠ABN=180°-80°-20°=80°,
∴∠NBC=∠BAN,
∴BA=BN,
∴BA=BM,
∵∠ABM=∠ABC-∠MBC=60°-20°=40°,
∴∠BAM=
(180°-∠ABM)=
(180°-40°)=70°.
故答案为:70°.

∵∠ABC=60°,∠MBC=20°,
∴∠NBC=∠ABC+∠ABN=60°+20°=80°,
∠BNC=180°-∠ACB-∠NBC=180°-20°-80°=80°,
∴∠BNC=∠NBC,
∴BC=NC,
∵CM平分∠ACB,
∴∠ACM=∠BCM,
在△NMC与△BMC中,
|
∴△NMC≌△BMC(SAS),
∴∠ANM=∠MBC=20°,
又∵∠MBN=∠ABC-∠MBC+∠ABN=60°-20°+20°=60°,
∠BNM=∠BNC-∠ANM=80°-20°=60°,
∴∠MBN=∠BNM=60°,
∴△BMN是等边三角形,BM=BN,
又∠BAN=180°-∠BNC-∠ABN=180°-80°-20°=80°,
∴∠NBC=∠BAN,
∴BA=BN,
∴BA=BM,
∵∠ABM=∠ABC-∠MBC=60°-20°=40°,
∴∠BAM=
1 |
2 |
1 |
2 |
故答案为:70°.
看了 如图,△ABC中,M是其内一...的网友还看了以下:
命题“若a,b都是奇数,则a-b是偶数”的逆否命是()A.若a-b不是偶数,则a,b不都是奇数B. 2020-04-09 …
a和b都是整数,且a÷b=2…1,下列说法正确的是()A.a是偶数B.a是奇数C.b是偶数D.b是 2020-04-09 …
判断对错A.若a=b,则|a|=|b|B.a=-b则|a|=|b|C.若|a|=|b|,则a=-b 2020-06-11 …
已知事件A、B,且0<P(A)<1,0<P(B)<1,P(A|B)+P(.A|.B)=1,则()A 2020-07-18 …
对任意的a、b∈R,定义:min{a,b}=a,(a<b)b.(a≥b);max{a,b}=a,( 2020-07-20 …
如果A点在直线a上,而直线a在平面α内,点B在α内,可以表示为()A.A⊂a,a⊂α,B∈αB.A 2020-07-31 …
已知a、b、c满足a<b<c,ab+bc+ac=0,abc=1,则()A.|a+b|>|c|B.|a 2020-11-01 …
已知n阶矩阵A,B满足AAT=E,BBT=E,其中E是n阶单位矩阵,则()A.|A+B|=|A|+| 2020-11-01 …
若a,b是异面直线,则只需具备的条件是()A.a⊂平面α,b⊄平面α,a与b不平行B.a⊂平面α,b 2020-11-02 …
设A、B是两个随机事件(记.B为事件B的对立事件),下面叙述正确的是()A.A∩B与A∪B互斥B.A 2020-12-01 …