早教吧作业答案频道 -->数学-->
已知抛物线y=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)的顶点是A,抛物线y=x2-2x+1的顶点是B.(1)判断点A是否在抛物线y=x2-2x+1上,为什么?(2)如果抛物线y=a(x-t-1)2+t2经过点B,①求a的值;
题目详情
已知抛物线y=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)的顶点是A,抛
物线y=x2-2x+1的顶点是B.
(1)判断点A是否在抛物线y=x2-2x+1上,为什么?
(2)如果抛物线y=a(x-t-1)2+t2经过点B,
①求a的值;
②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形?若能,求出t的值;若不能,请说明理由.
物线y=x2-2x+1的顶点是B.(1)判断点A是否在抛物线y=x2-2x+1上,为什么?
(2)如果抛物线y=a(x-t-1)2+t2经过点B,
①求a的值;
②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形?若能,求出t的值;若不能,请说明理由.
▼优质解答
答案和解析
(1)由题意可知:A点的坐标为(t+1,t2),将A点的坐标代入抛物线y=x2-2x+1中可得:(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2;
因此A点在抛物线y=x2-2x+1上.
(2)①由题意可知:B点坐标为(1,0).则有:
0=a(1-t-1)2+t2,即at2+t2=0,因此a=-1.
②根据①可知:抛物线的解析式为y=-(x-t-1)2+t2;
当y=0时,-(x-t-1)2+t2=0,解得x=1或x=2t+1
设抛物线与x轴的交点为M,N,那么M点的坐标为(1,0),N点的坐标为(2t+1,0)
因此:AM2=t2+t4,AN2=t2+t4,MN2=4t2
当△AMN是直角三角形时,AM2+AN2=MN2
即(t2+t4)×2=4t2
解得t1=1或t2=-1
因此能构成直角三角形,此时t的值为1或-1.
因此A点在抛物线y=x2-2x+1上.
(2)①由题意可知:B点坐标为(1,0).则有:
0=a(1-t-1)2+t2,即at2+t2=0,因此a=-1.
②根据①可知:抛物线的解析式为y=-(x-t-1)2+t2;
当y=0时,-(x-t-1)2+t2=0,解得x=1或x=2t+1
设抛物线与x轴的交点为M,N,那么M点的坐标为(1,0),N点的坐标为(2t+1,0)
因此:AM2=t2+t4,AN2=t2+t4,MN2=4t2
当△AMN是直角三角形时,AM2+AN2=MN2
即(t2+t4)×2=4t2
解得t1=1或t2=-1
因此能构成直角三角形,此时t的值为1或-1.
看了 已知抛物线y=a(x-t-1...的网友还看了以下:
用适合的数或整式填空(1)如果a+1=1,那么a=(1)如果a+1=1,那么a=(2)如果0.6x= 2020-03-31 …
“已知一次函数的图像进过A(0,-3),B(1,a),C(a,有难度,已知一次函数的图象经过A(0 2020-06-13 …
高中数学题已知对任意平面向量向量AB=(x,y),把向量AB绕其起点沿逆时针方向旋转角a得到向量A 2020-06-22 …
已知点A(1,0).点R在y轴上运动,T在x轴上,N为动点,已知点A(1,0).点R在y轴上运动, 2020-07-22 …
反比例函数曲线中点坐标怎么求.例如点A(1,4)点B(2,2)在反比例函数y=...反比例函数曲线 2020-07-29 …
数学题在平面直角坐标系中,O为坐标原点,已知向量a=(1,2),点A(1,0),B(cosX,T) 2020-08-01 …
如图,点B在线段AC上(AB>BC),若AB=2,BC=a-1,且点B是线段AC的黄金分割点,则a 2020-08-02 …
f(x)在[0,1]上可导,f(0)=0,f(1)=1,且f(x)不恒等于x.证明存在a∈(0,1) 2020-11-08 …
已知|u|=3,|v|=4,且u与v反向,则u·v=设a>0,a≠1,如果函数f(x)=log(a) 2020-12-15 …
证明压缩映像原理f导的绝对值不大于a,a小于1,则f存在不动点.若a=1如何?还望高手指教,请说的详 2020-12-26 …