早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,-x+y=1.(1)求点D的坐标
题目详情
如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,-x+y=1.

(1)求点D的坐标;
(2)用含有a的式子表示点P的坐标;
(3)图中面积相等的三角形有几对?

(1)求点D的坐标;
(2)用含有a的式子表示点P的坐标;
(3)图中面积相等的三角形有几对?
▼优质解答
答案和解析
(1)∵P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,
∴A(x,0),B(0,y),
即:OA=-x,BO=-y,
∵AD=BO,
∴-x-DO=-y,
∴-x+y=DO,
又∵-x+y=1,
∴OD=1,即:点D的坐标为(-1,0).
(2)∵EO是△AEF的中线,
∴AO=OF=-x,
∵OF+FC=CO,
又∵OB=2FC=-y,OC=a,
∴-x-
=a,
又∵-x+y=1,
∴
y=1-a,
∴y=
,
∴x=
,
∴P(
,
);
(3)图中面积相等的三角形有3对,
利用S△AEO-S△AMO=S△FEO-S△FBO,可以得出S△OME=S△FBE,
故面积相等的三角形分别是:△AEO与△FEO,△AMO与△FBO,△OME与△FBE.
∴A(x,0),B(0,y),
即:OA=-x,BO=-y,
∵AD=BO,
∴-x-DO=-y,
∴-x+y=DO,
又∵-x+y=1,
∴OD=1,即:点D的坐标为(-1,0).
(2)∵EO是△AEF的中线,
∴AO=OF=-x,
∵OF+FC=CO,
又∵OB=2FC=-y,OC=a,

∴-x-
y |
2 |
又∵-x+y=1,
∴
3 |
2 |
∴y=
2−2a |
3 |
∴x=
−2a−1 |
3 |
∴P(
−2a−1 |
3 |
2−2a |
3 |
(3)图中面积相等的三角形有3对,
利用S△AEO-S△AMO=S△FEO-S△FBO,可以得出S△OME=S△FBE,
故面积相等的三角形分别是:△AEO与△FEO,△AMO与△FBO,△OME与△FBE.
看了 如图,在平面直角坐标系中,O...的网友还看了以下:
再等腰三角形ABCD中,AD平行BC,点E是AD延长线上一点,DE=BC.1.求证:角F=角DBC 2020-06-03 …
已知任意平行四边形ABCD中,角BAD和角BCD的角平分线是AE和CF,其中点E,F分别是AE和C 2020-06-06 …
设G和F是两个集合,则“G中的元素都在F中”是“G=F”的什么条件 2020-06-15 …
图中图中AB平行ED角一等于角二,角三等于角四,BF,DF交于点F,角ABC等于44度,角COE等 2020-07-30 …
在△ABC中,abc分别是角ABC的对边,且(2a+c)cosB+bcosC=0求角B值已知函数f 2020-07-30 …
在三角形ABC中a.b.c分别是角A.B.C的对边,且(2a+c)+bcosC=0(1)求角B的值 2020-07-30 …
在三角形ABC中,角A角B的平分线分别交对边于D,E角C的外角平分线交对边延长线于F,求证:D、E 2020-08-03 …
三角形ABC中,角B角C的外角平分线交于点D,DE垂直AB,DF垂直AC求证AD是角A的平分线另一 2020-08-03 …
在三角形ABC中,D是BC的中点,射线DF交BA于E,交CA的延长线于F,当BE=CF时,问角BAC 2020-12-25 …
在三角形ABC中,D是BC的中点,射线DF交BA于E,交CA的延长线于F,当BE=CF时,问角BAC 2020-12-25 …