早教吧作业答案频道 -->数学-->
((b*b-c*c)/a*a)sin(2A)+((c*c-a*a)/b*b)sin(2B)+((a*a-b*b)/c*c)sin(2C)=
题目详情
((b*b-c*c)/a*a)sin(2A)+((c*c-a*a)/b*b)sin(2B)+((a*a-b*b)/c*c)sin(2C)=
▼优质解答
答案和解析
[(b^2-c^2)/a^2]sin2A+[c^2-a^2)/b^2]sin2B+[(a^2-b^2)/c^2]sin2C
由正弦定理可得:
(b^2-c^2)/a^2=(sin^2B-sin^2c)/sin^2A
=(sinB+sinC)(sinB-sinC)/sinA*sinA
=[4sin(B+C)/2*sin(B-C)/2*sin(B-c)/2*cos(B-C)/2]/sin^2A
=sin(B+C)*sin(B-C)/sin^2A
=sin(B-C)/sinA,
于是
[(b^2-c^2)/a^2]*sin2A
=2sinAcosA*sin(B-C)/sinA
=sin(B-C)cosA
=-sin(B-C)cos(B+C)
=sin2C-sin2B;
同理可得
[(c^2-a^2)/b^2]sin2B=sin2A-sin2C;
[(a^2-b^2)/c^2]sin2C=sin2B-sin2A.
于是
[(b^2-c^2)/a^2 ]*sin2A+[(c^2-a^2)/b^2]sin2B+[(a^2-b^2)/c^2]sin2C=0
由正弦定理可得:
(b^2-c^2)/a^2=(sin^2B-sin^2c)/sin^2A
=(sinB+sinC)(sinB-sinC)/sinA*sinA
=[4sin(B+C)/2*sin(B-C)/2*sin(B-c)/2*cos(B-C)/2]/sin^2A
=sin(B+C)*sin(B-C)/sin^2A
=sin(B-C)/sinA,
于是
[(b^2-c^2)/a^2]*sin2A
=2sinAcosA*sin(B-C)/sinA
=sin(B-C)cosA
=-sin(B-C)cos(B+C)
=sin2C-sin2B;
同理可得
[(c^2-a^2)/b^2]sin2B=sin2A-sin2C;
[(a^2-b^2)/c^2]sin2C=sin2B-sin2A.
于是
[(b^2-c^2)/a^2 ]*sin2A+[(c^2-a^2)/b^2]sin2B+[(a^2-b^2)/c^2]sin2C=0
看了 ((b*b-c*c)/a*a...的网友还看了以下:
在三角形ABC中,已知sin²B-sin²C-sin²A=√3sinCsinA,则角B的大小是?² 2020-04-27 …
单位向量a,b,c共面,两两夹角分别为α(b,c),β(c,a),γ(a,b).证明a*sinα+ 2020-05-13 …
求助MATLAB符号计算:%声明符号变量syms c w t b a D n T v Q x y; 2020-05-16 …
如何推导sin(a+b)sin(a-b)tan(a+b)怎么推导出来就用公式不画图sin(a+b) 2020-05-16 …
△ABC中,若(sin²B+sin²C-sin²A)/sinBsinC=1求角A 2020-06-03 …
1设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ) 2020-06-11 …
当45°<θ<90°时,下列各式中正确的是().A.tanθ>cosθ>sinθB.sinθ>co 2020-06-16 …
1,Sin(-1071°)*Sin99°Sin(-171°)*Sin(-261°)2,1Sin(a 2020-07-18 …
设向量a与b的夹角为θ,定义a与b的“向量积”:a·b是一个向量,它的模|a·b|=|a|·|b| 2020-07-29 …
已知两个非零向量a→与b→,定义∣∣∣a→×b→∣∣∣=∣∣∣a→∣∣∣∣∣∣b→∣∣∣sinθ, 2020-08-01 …