早教吧作业答案频道 -->其他-->
已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;(Ⅱ)设C为W上一点,且AB⊥AC,过B,C
题目详情
已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.
▼优质解答
答案和解析
(Ⅰ)抛物线y=x2的焦点为(0,
).…(1分)
由题意,得直线AB的方程为y-1=k(x-1),…(2分)
令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).…(3分)
∵抛物线W的焦点在直线AB的下方,
∴1-k>
,
解得k<
.…(5分)
(Ⅱ)设B(x1,x12),C(x2,x22),则
∵A(1,1)且AB⊥AC,
∴
•
=−1
即(x1+x2)+x1•x2=-2------(6分)
又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,
∴B、C处的切线方程为y-x12=2x1(x-x1)和y-x22=2x2(x-x2),
联立解得D(
,x1•x2)------(8分)
设x1x2=t,由(x1+x2)+x1•x2=-2得
=-1-
,
∴|OD|2=(-1-
)2+t2=
t2+t+1-----(10分)
当t=-
时,|OD|2min=
,
∴|OD|min=
-----(12分)
1 |
4 |
由题意,得直线AB的方程为y-1=k(x-1),…(2分)
令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).…(3分)
∵抛物线W的焦点在直线AB的下方,
∴1-k>
1 |
4 |
解得k<
3 |
4 |
(Ⅱ)设B(x1,x12),C(x2,x22),则
∵A(1,1)且AB⊥AC,
∴
x22−1 |
x2−1 |
x12−1 |
x1−1 |
即(x1+x2)+x1•x2=-2------(6分)
又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,
∴B、C处的切线方程为y-x12=2x1(x-x1)和y-x22=2x2(x-x2),
联立解得D(
x1+x2 |
2 |
设x1x2=t,由(x1+x2)+x1•x2=-2得
x1+x2 |
2 |
t |
2 |
∴|OD|2=(-1-
t |
2 |
5 |
4 |
当t=-
2 |
5 |
4 |
5 |
∴|OD|min=
2
| ||
5 |
看了 已知A,B是抛物线W:y=x...的网友还看了以下:
已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m 2020-04-08 …
已知A点坐标为(0,8),直线l:x-2y-4=0与y轴交于B点.P为直线l上动点1、求以A点位定 2020-06-14 …
高中数学解析几何一道题在等腰梯形ABCD中,AB//CD,且AB=2AD,设∠DAB=Θ,Θ∈(0 2020-06-27 …
下列铁路线跨越长江的有()A.京广线、京哈线B.焦柳线、成昆线C.宝成线、湘黔线D.京九线、太焦线 2020-07-01 …
在等腰梯形ABCD中AB//CD,且AB>CD,设以A,B为焦点且过点D的双曲线的离心率为2,以C 2020-07-10 …
下图铁路干线序号与名称都正确的是A.①焦柳线②京九线③京广线④京沪线B.①焦柳线②京广线③京九线④ 2020-07-16 …
(2000•天津)如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段.AC所成的比为81 2020-07-21 …
已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且当PA与抛物线相 2020-07-31 …
设抛物线,为焦点,为准线,准线与轴交点为(1)求;(2)过点的直线与抛物线交于两点,直线与抛物线交 2020-07-31 …
如图,在等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈(0,π2),以A、B为焦 2020-10-31 …