早教吧作业答案频道 -->其他-->
已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;(Ⅱ)设C为W上一点,且AB⊥AC,过B,C
题目详情
已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.
▼优质解答
答案和解析
(Ⅰ)抛物线y=x2的焦点为(0,
).…(1分)
由题意,得直线AB的方程为y-1=k(x-1),…(2分)
令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).…(3分)
∵抛物线W的焦点在直线AB的下方,
∴1-k>
,
解得k<
.…(5分)
(Ⅱ)设B(x1,x12),C(x2,x22),则
∵A(1,1)且AB⊥AC,
∴
•
=−1
即(x1+x2)+x1•x2=-2------(6分)
又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,
∴B、C处的切线方程为y-x12=2x1(x-x1)和y-x22=2x2(x-x2),
联立解得D(
,x1•x2)------(8分)
设x1x2=t,由(x1+x2)+x1•x2=-2得
=-1-
,
∴|OD|2=(-1-
)2+t2=
t2+t+1-----(10分)
当t=-
时,|OD|2min=
,
∴|OD|min=
-----(12分)
1 |
4 |
由题意,得直线AB的方程为y-1=k(x-1),…(2分)
令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).…(3分)
∵抛物线W的焦点在直线AB的下方,
∴1-k>
1 |
4 |
解得k<
3 |
4 |
(Ⅱ)设B(x1,x12),C(x2,x22),则
∵A(1,1)且AB⊥AC,
∴
x22−1 |
x2−1 |
x12−1 |
x1−1 |
即(x1+x2)+x1•x2=-2------(6分)
又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,
∴B、C处的切线方程为y-x12=2x1(x-x1)和y-x22=2x2(x-x2),
联立解得D(
x1+x2 |
2 |
设x1x2=t,由(x1+x2)+x1•x2=-2得
x1+x2 |
2 |
t |
2 |
∴|OD|2=(-1-
t |
2 |
5 |
4 |
当t=-
2 |
5 |
4 |
5 |
∴|OD|min=
2
| ||
5 |
看了 已知A,B是抛物线W:y=x...的网友还看了以下:
椭圆MX^2/a^2+y^2/b^2=1的左右焦点分别为F1F2.P是椭圆上任意一点,且向量PF1 2020-05-15 …
数学不等式如何确定取值范围?1、已知-2(π)≤α<β≤2(π),求2(α+β),2(α-β)的取 2020-05-19 …
椭圆Mx^2/a^2+y^2/b^2=1(a大于b大于0)左右焦点F1(-c,0)F2(c,0)P 2020-06-04 …
若C,D是轨道X^2+4y^2=0上的两个动点,M(0,2)若向量MC=λ向量MD(λ不等于0), 2020-06-29 …
200分设函数f(x)=cosx/4(sinx/4+cosx/4)-1/2(1),求函数y=f(x 2020-07-17 …
高一恒成立,有解问题(1)方程x²-4x+3b=0在[1,4]有解,b取值范围?(2)不等式x²- 2020-07-31 …
已知函数f(x)=(|x|-b)2+c,函数g(x)=x+m,(1)当b=2,m=-4时,f(x) 2020-07-31 …
已知函数f(x)=(|x|-b)2+c,函数g(x)=x+m.(1)当b=2,m=-4时,f(x) 2020-07-31 …
设fx=x^2+bx+c(b,c∈R),若丨x丨≥2时,f(x)≥0,且f(x)在区间(2,3]上 2020-07-31 …
已知a的绝对值=1,b的绝对值=2,c的绝对值=3,且a大于b大于c,求a+b+c的值 2020-07-31 …