在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.(Ⅰ)证明数列{an-n}是等比数列;(Ⅱ)求数列{an}的前n项和Sn;(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
|
本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前 (Ⅰ)证明:由题设 又 (Ⅱ)由(Ⅰ)可知 所以数列 (Ⅲ)证明:对任意的 所以不等式 |
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
等差数列{n的a次}中,a3=负3,a6=负九分之一,求a8 2020-07-09 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
1.已知数列(an)满足a1=1/5,且当n≥2时,有a[n-1]/a[n]=(2a[n-1]+1 2020-07-30 …
高二数列的真假命题.1.若An=A(n-1)+3(n≥2),则An为等差数列.2.若A(n+1)-A 2020-12-14 …
数列概念问题数列a(n+1)-a(n)=常数这个数列是指a(n)是以这个常数为公差的等差数列还是是指 2020-12-26 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …