若不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[-1,+∞)恒成立,则实数a的取值范围是()A.[0,+∞)B.[0,1]C.[0,e]D.[-1,0]
若不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[-1,+∞)恒成立,则实数a的取值范围是( )
A. [0,+∞)
B. [0,1]
C. [0,e]
D. [-1,0]
∵不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[-1,+∞)恒成立,
∴fmin(x)≥0,
f′(x)=
1 |
x+2 |
2ax2+5ax+2a+1 |
x+2 |
令g(x)=2ax2+5ax+2a+1,
(1)若a=0,则g(x)=1,∴f′(x)>0,
∴f(x)在[-1,+∞)上单调递增,∴fmin(x)=f(-1)=0,符合题意;
(2)若a>0,则g(x)的图象开口向上,对称轴为x=-
5 |
4 |
∴g(x)在[-1,+∞)上单调递增,∴gmin(x)=g(-1)=1-a,
①若1-a≥0,即0<a≤1,则g(x)≥0,∴f′(x)≥0,由(1)可知符合题意;
②若1-a<0,即a>1,则存在x0∈(-1,+∞),
使得当x∈(-1,x0)时,g(x)<0,当x∈(x0,+∞)时,g(x)>0,
∴f(x)在(-1,x0)上单调递减,在(x0,+∞)上单调递增,
∴fmin(x)<f(-1)=0,不符合题意;
(3)若a<0,则g(x)的图象开口向下,对称轴为x=-
5 |
4 |
∴g(x)在[-1,+∞)上单调递减,gmax(x)=g(-1)=1-a>0,
∴存在x1∈(-1,+∞),使得当x∈(-1,x1)时,g(x)>0,当x∈(x1,+∞)时,g(x)<0,
∴f(x)在(-1,x1)单调递增,在(x1,+∞)上单调递减,
∴f(x)在(-1,+∞)上不存在最小值,不符合题意;
综上,a的取值范围是[0,1].
故选B.
如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养 2020-04-07 …
这个函数怎么求积分0到75度的积分?2*m*(0.15*tan(b)+a)^2/((15-100/ 2020-04-09 …
无机化学简明教程课后习题几个问题刚学无机化学,可惜课后习题没答案,有谁知道答案的?下列量子数所表示 2020-04-27 …
这个函数公式是什么意思的?=IF(SUMPRODUCT((Sheet1!B$2:B$312=B2) 2020-05-21 …
近代化学基础急一1.在用量子数表示核外电子运动状态时,写出下列各组中所缺少的量子数.(1)n=3, 2020-06-04 …
经济学问题;如果某厂商的生产函数为Q=F(K,L)=5K^1/2*L^1/2,P(k)=4,P(L 2020-06-08 …
观察下面三行数:2,-4,8,-16.(1)-l,2,-4,8.(2)3,-3,9,-l5(3)第 2020-07-10 …
请高手用MATLAB帮忙解下微分方程组教下:Dy(1)=y(2);Dy(2)=y(3)^2*u*A 2020-07-21 …
甲、乙两人各进行你次射击,甲每次击中目标l概率为12,乙每次击中目标l概率为2你.(1)求乙至多击中 2020-10-30 …
原子结构原子中每个电子的运动状态由四个量子数n,l,m,ms确定.假设它的取值规则为:n=1,2,3 2020-12-02 …