早教吧作业答案频道 -->数学-->
微分方程题y''+y=e^x+cosx
题目详情
微分方程题
y''+y=e^x+cosx
y''+y=e^x+cosx
▼优质解答
答案和解析
∵齐次方程y''+y=0的特征方程是r²+1=0,则特征根是r=±i(i是虚数单位)
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
于是,设原方程的解为y=Ae^x+x(Bcosx+Csinx)
代入原方程,得Ae^x-2Bsinx+2Ccosx-x(Bcosx+Csinx)+Ae^x+x(Bcosx+Csinx)=e^x+cosx
==>2Ae^x-2Bsinx+2Ccosx=e^x+cosx
==>2A=1,-2B=0,2C=1
==>A=1/2,B=0,C=1/2
即原方程的一个解是y=(e^x+xsinx)/2
故原方程的通解是y=C1cosx+C2sinx+(e^x+xsinx)/2 (C1,C2是积分常数).
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
于是,设原方程的解为y=Ae^x+x(Bcosx+Csinx)
代入原方程,得Ae^x-2Bsinx+2Ccosx-x(Bcosx+Csinx)+Ae^x+x(Bcosx+Csinx)=e^x+cosx
==>2Ae^x-2Bsinx+2Ccosx=e^x+cosx
==>2A=1,-2B=0,2C=1
==>A=1/2,B=0,C=1/2
即原方程的一个解是y=(e^x+xsinx)/2
故原方程的通解是y=C1cosx+C2sinx+(e^x+xsinx)/2 (C1,C2是积分常数).
看了 微分方程题y''+y=e^x...的网友还看了以下:
求微分方程(2x+e^y+2)dx+e^y(x+2e^y-1)dy=0的通解我就那么点分了 2020-05-17 …
协方差等于零能推出相互独立吗?∵cov(X,Y)=0又∵cov(X,Y)=E(XY)-E(X协方差 2020-06-10 …
求微分方程的通解1.xy'-yIny=02.cosxsinydx+sinxcosydy=03.(e 2020-06-12 …
[e^(x+y)-e^x]dx+[e^(x+y)+e^y]dy=0,求微分方程的通解 2020-06-12 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
问个二阶常系非其次微分方程的题y''+2y'+y=(3x^2)e^(-x)书上是这样求的先求出齐次 2020-07-31 …
问个二阶常系非其次微分方程的题y''+2y'+y=(3x^2)e^(-x)书上是这样求的先求出齐次 2020-07-31 …
为什么方法不一样答案不一样求xy=e^(x+y)的导数方法一两边取对数lnx+lny=x+y求导(1 2020-11-06 …
解一个微分方程:(x^2+xy)dx-y^2dy=0讨论函数在点(0.0)的重极限与累次极限f(x, 2020-12-23 …
e的导数是e还是0谢谢,那由方程e^y(e的y次方)+xy-e=o所确定的隐函数y的导数,这个例题对 2021-02-16 …