早教吧作业答案频道 -->其他-->
函数f(x)=x3-ax2+的极值点是x1,x2,函数g(x)=x-alnx的极值点是x0,若x0+x1+x2<2.(I)求实数a的取值范围;(II)若存在实数a,使得对∀x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实
题目详情
函数f(x)=
x3-
ax2+
的极值点是x1,x2,函数g(x)=x-alnx的极值点是x0,若x0+x1+x2<2.
(I )求实数a的取值范围;
(II)若存在实数a,使得对∀x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实数m的取值范围.



(I )求实数a的取值范围;
(II)若存在实数a,使得对∀x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实数m的取值范围.
▼优质解答
答案和解析
(I )∵函数f(x)=
x3-
ax2+
的极值点是x1,x2,,
∴
,x1,x2是方程
的两个根,
∴
,x1+x2=a,
∵g(x)=x-alnx的极值点是x0,
∴
,(x>0).
当a≤0时,g′(x)>0,函数无极值点.
当a>0,x∈(0,a),g′(x)<0;当x∈(a,+∞),g′(x)>0,
函数的极值点x0=a.
∵x0+x1+x2<2.
∴
,
∴
.
(II)∵
,
∴g(x)在[1,m]上为增函数,
∴g(x)min=g(1)=1.
导函数f′(x)的对称轴为x=
,
,
∴x1,x2都是小于1的正数,
∵f′(x)=(x-x1)(x-x2),令x1<x2,
∵
,
∴f(x)在[1,m]上为增函数,
∴
,
∴
,
即-27m2a+18m3+4m≤0,
∵m>1,令h(a)在(
)为减函数,
∴h(1)<0,即18m3-27m2+4m<0,
解得
,
∴
.



∴


∴

∵g(x)=x-alnx的极值点是x0,
∴

当a≤0时,g′(x)>0,函数无极值点.
当a>0,x∈(0,a),g′(x)<0;当x∈(a,+∞),g′(x)>0,
函数的极值点x0=a.
∵x0+x1+x2<2.
∴

∴

(II)∵

∴g(x)在[1,m]上为增函数,
∴g(x)min=g(1)=1.
导函数f′(x)的对称轴为x=


∴x1,x2都是小于1的正数,
∵f′(x)=(x-x1)(x-x2),令x1<x2,
∵

∴f(x)在[1,m]上为增函数,
∴

∴

即-27m2a+18m3+4m≤0,
∵m>1,令h(a)在(

∴h(1)<0,即18m3-27m2+4m<0,
解得

∴

看了 函数f(x)=x3-ax2+...的网友还看了以下:
已知函数f(x)满足,对任意实数x都有,f(1+x)=f(1-x),f(3+x)=f(3-x)(1) 2020-03-31 …
已知函数f(2ˆx -1)=2x-1,求f(x) 已知f(更号X +1)=x+2,求f(x)已知函 2020-05-13 …
f(x)=x^2+ax+b(1)函数f(x)的图像过(1,1),f(-1)=f(3),求g(x)= 2020-05-16 …
1、已知函数f(x)的定义域是[0,1]。求f(x-2),f(x-1),f(2x-2)的定义域。变 2020-05-17 …
函数的解析式及定义域1)已知f(x+1/x)=x³+1/x³,求f(x)2)已知f(2/x+1)= 2020-07-18 …
设y=f(x,t),且方程F(x,y,t)=0确定了t=t(x,y),求dy/dx457页的答案在 2020-07-22 …
已知函数f(x)的定义域为R,对任意的x,y∈R,都有f(x+y)=f(x)*f(y)当x>0时, 2020-07-22 …
求教已知函数f(x)满足f(x)=f'(1)e^(x-1)-f(0)x+(1/2)x²已知函数f(x 2020-12-08 …
已知f(x)是二次函数且满足f(0)=1f(x+1)=f(x)-2x+2求f(x)解析式已知f(x) 2020-12-08 …
求f(x)解析式1.已知f(1+1/x)=x2+1/x2+3/x,求f(x)解析式2.已知f(求f( 2020-12-08 …