早教吧作业答案频道 -->数学-->
设圆C过顶点A(p,0),其中p>0,圆心C在抛物线Y^2=2px上运动,MN为圆C在Y轴截得的弦(1)问MN是否随圆心C的运动而变化?证明你的结论(2)当|OM|+|ON|=2|OA|(其中O为坐标原点)时,判断抛物线的准线与圆C的位
题目详情
设圆C过顶点A(p,0),其中p>0,圆心C在抛物线Y^2=2px上运动,MN为圆C在Y轴截得的弦
(1)问MN是否随圆心C的运动而变化?证明你的结论
(2)当|OM|+|ON|=2|OA|(其中O为坐标原点)时,判断抛物线的准线与圆C的位置关系
(1)问MN是否随圆心C的运动而变化?证明你的结论
(2)当|OM|+|ON|=2|OA|(其中O为坐标原点)时,判断抛物线的准线与圆C的位置关系
▼优质解答
答案和解析
(1)设圆心C(c,根号2pc)
圆C方程(x-c)^2+(y-根号2pc)^2=r^2………………①
过点A(p,0)
(p-c)^2+(0-根号2pc)^2=r^2…………………………②
由①②得x^2-2xc+y^2-2y根号2pc=p^2-2pc,p>0 c≥0
令c=0得y^2-2y根号2pc-p^2+2pc=0
点M(Xm,Ym)、N(Xn.Yn)的纵坐标为该方程两解.
即MN^2=(Yn-Ym)^2=(Yn+Ym)^2-4YnYm
Yn+Ym=2倍根号2pc
YnYm=2pc-p^2
MN^2=4(p^2)
MN=2p
所以MN不是随圆心C的运动而变化.
(2)由题意应该知道M或N中至少有一根为正
当YnYm=2pc-p^2≥0时,2c≥p,即两个根均为正值
|OM|+|ON|=Yn+Ym=2倍根号2pc=2|OA|=2p,p>0
得p=2c
圆C方程为(x-c)^2+(y-2c)^2=5(c^2)
抛物线的准线x=-p/2=-c与圆C相交
当YnYm=2pc-p^2<0时,2c<p,即两个根一正一负
|OM|+|ON|=|Yn-Ym|
(|OM|+|ON|)^2=(Yn-Ym)^2=4p^2=(2|OA|)^2=4p^2
恒成立
2c<p
易知也是相交.
综上抛物线的准线与圆C相交.
圆C方程(x-c)^2+(y-根号2pc)^2=r^2………………①
过点A(p,0)
(p-c)^2+(0-根号2pc)^2=r^2…………………………②
由①②得x^2-2xc+y^2-2y根号2pc=p^2-2pc,p>0 c≥0
令c=0得y^2-2y根号2pc-p^2+2pc=0
点M(Xm,Ym)、N(Xn.Yn)的纵坐标为该方程两解.
即MN^2=(Yn-Ym)^2=(Yn+Ym)^2-4YnYm
Yn+Ym=2倍根号2pc
YnYm=2pc-p^2
MN^2=4(p^2)
MN=2p
所以MN不是随圆心C的运动而变化.
(2)由题意应该知道M或N中至少有一根为正
当YnYm=2pc-p^2≥0时,2c≥p,即两个根均为正值
|OM|+|ON|=Yn+Ym=2倍根号2pc=2|OA|=2p,p>0
得p=2c
圆C方程为(x-c)^2+(y-2c)^2=5(c^2)
抛物线的准线x=-p/2=-c与圆C相交
当YnYm=2pc-p^2<0时,2c<p,即两个根一正一负
|OM|+|ON|=|Yn-Ym|
(|OM|+|ON|)^2=(Yn-Ym)^2=4p^2=(2|OA|)^2=4p^2
恒成立
2c<p
易知也是相交.
综上抛物线的准线与圆C相交.
看了 设圆C过顶点A(p,0),其...的网友还看了以下:
如图,OA=4,线段OA的中点为B,点C在圆O上AC叫圆O于D,且AD=CD求Bdad长如图,OA= 2020-03-31 …
在Rt三角形中角c等于90度,AB等于3厘米,BC等于2厘米,以A为圆心,2厘米长为半径作圆.则点 2020-05-23 …
我想知道在一个平面圆中!其中有3点abc,ab在同一线上,c在圆的半径一半处!他们运动周期相同吗? 2020-06-11 …
如图,半径为1圆心角为3π2圆弧AB上有一点C.(1)当C为圆弧AB中点时,D为线段OA上任一点, 2020-06-11 …
如图,AB为圆O的直径,PB为O的切线,AC//OP,点C在圆O上,OP交圆O于D,DA交BC于G 2020-06-27 …
已知A.B.C是平面内的三点,AB=3,BC=3,AC=6,下列说法中,正确的是.()A.可以画一 2020-07-21 …
1.若函数f(x)=(1/b)e^(ax)的图像在x=0处的切线l与圆C:x²+y²=1相离,则P 2020-07-26 …
如图a直线l经过圆o的圆心o,且与圆o交于A,B两点,点c在圆o上且点C在圆o上,且∠AOC=30 2020-07-26 …
圆周长的定义是;在圆中内接一个n正边形,边长设为an,正边形的周长为:n*an当n不断增大的时候, 2020-08-01 …
A、B、C是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是()清P17-3A.可以画一 2020-11-08 …