早教吧作业答案频道 -->数学-->
如图①,已知∠MON=Rt∠,点A,P分别是射线OM,ON上两定点,且OA=2,OP=6,动点B从点O向点P运动,以AB为斜边向右侧作等腰直角△ABC,设线段OB的长x,点C到射线ON的距离为y.(1)若OB=2,直接写
题目详情
如图①,已知∠MON=Rt∠,点A,P分别是射线OM,ON上两定点,且OA=2,OP=6,动点B从点O向点P运动,以AB为斜边向右侧作等腰直角△ABC,设线段OB的长x,点C到射线ON的距离为y.
(1)若OB=2,直接写出点C到射线ON的距离;
(2)求y关于x的函数表达式,并在图②中画出函数图象;
(3)当动点B从点O运动到点P,求点C运动经过的路径长.

(1)若OB=2,直接写出点C到射线ON的距离;
(2)求y关于x的函数表达式,并在图②中画出函数图象;
(3)当动点B从点O运动到点P,求点C运动经过的路径长.

▼优质解答
答案和解析
(1)如图①中,

∵OA=OB=2,∠AOB=90°,△ACB是等腰直角三角形,
∴四边形OACB是正方形,
∴点C到ON的距离为2.
(2)如图③中,作CE⊥OA于E,CF⊥ON于F.

∵∠ACB=∠ECF=90°,CA=CB,∠CEA=∠CFB=90°,
∴△CEA≌△CFB,
∴AE=CF,CE=CF,
∵∠CEO=∠CFO=∠EOF=90°,
∴四边形OECF是矩形,∵CE=CF,
∴四边形OECF是正方形,
∴CF=CE=OE=OF=y,
∵AE=y-2,FB=x-y,
∴y-2=x-y,
∴y=
x+1,可得函数图象如图②所示,

(3)如图③中,∵CE=CF,
∴OC平分∠MON,
∴点C的运动轨迹是线段OC,
∵x=6,y=4,
∴OC=4
,
∴点C运动经过的路径长为4
.

∵OA=OB=2,∠AOB=90°,△ACB是等腰直角三角形,
∴四边形OACB是正方形,
∴点C到ON的距离为2.
(2)如图③中,作CE⊥OA于E,CF⊥ON于F.

∵∠ACB=∠ECF=90°,CA=CB,∠CEA=∠CFB=90°,
∴△CEA≌△CFB,
∴AE=CF,CE=CF,
∵∠CEO=∠CFO=∠EOF=90°,
∴四边形OECF是矩形,∵CE=CF,
∴四边形OECF是正方形,
∴CF=CE=OE=OF=y,
∵AE=y-2,FB=x-y,
∴y-2=x-y,
∴y=
1 |
2 |

(3)如图③中,∵CE=CF,
∴OC平分∠MON,
∴点C的运动轨迹是线段OC,
∵x=6,y=4,
∴OC=4
2 |
∴点C运动经过的路径长为4
2 |
看了 如图①,已知∠MON=Rt∠...的网友还看了以下:
如图,已知△ABC中,AB=AC=a,BC=10,动点P沿CA方向从点C向点A运动,同时,动点Q沿 2020-04-26 …
已知三角形ABC的三个顶点,A,B,C及平面一点P,满足向量PA+向量PB+向量PC=向量AB,则 2020-04-27 …
已知A,B,C,D四点共面且任三点不共线,面外空间一点P满足,向量AP=x向量PB+2向量PC-2 2020-05-13 …
已知向量m=(a,b),n=(c,d),p=(x,y),定义新运算m*n=(ac+bd,ad+bc 2020-05-16 …
已知集合向量M={第一象限角},向量N={锐角},向量P={小于90°角},则下列关系式中正确的是 2020-05-16 …
已知定点P(p,0)(p>0),动点M在y轴上的射影为H,若向量PM→与HM→在OM→方向上的投影 2020-07-30 …
高一数学,紧急!1.已知三角形ABC中,a=3,b=6,c=60度,则向量BC乘向量CA=2.已知 2020-08-02 …
高一数学题3已知a、b、为非零向量,求证a⊥b|a+b|=|a-b|.4已知a+b=c,a-b=c, 2020-11-02 …
已知向量a.b.c.是空间的一个单位正交基底、向量a+b.a-b.c.是空间的另一个基底、若向量p在 2020-11-10 …
问下C程指针若有五个连续的int类型的存储单元并赋值如下,a[0]的地址小于a[4]的地址。p和s是 2020-11-10 …