早教吧作业答案频道 -->数学-->
已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连
题目详情
已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.
▼优质解答
答案和解析
(1)∵四边形ABCD和四边形BPEF是正方形,
∴AB=BC,BP=BF,
∴AP=CF,
在△APE和△CFE中,
,
∴△APE≌△CFE,
∴EA=EC;
(2)①∵P为AB的中点,
∴PA=PB,又PB=PE,
∴PA=PE,
∴∠PAE=45°,又∠DAC=45°,
∴∠CAE=90°,即△ACE是直角三角形;
②∵EP平分∠AEC,EP⊥AG,
∴AP=PG=a-b,BG=a-(2a-2b)=2b-a
∵PE∥CF,
∴
=
,即
=
,
解得,a=
b;
作GH⊥AC于H,
∵∠CAB=45°,
∴HG=
AG=
×(2
b-2b)=(2-
)b,又BG=2b-a=(2-
)b,
∴GH=GB,GH⊥AC,GB⊥BC,
∴∠HCG=∠BCG,
∵PE∥CF,
∴∠PEG=∠BCG,
∴∠AEC=∠ACB=45°.
∴a:b=
:1;∴∠AEC=45°.
∴AB=BC,BP=BF,
∴AP=CF,
在△APE和△CFE中,
|
∴△APE≌△CFE,
∴EA=EC;

(2)①∵P为AB的中点,
∴PA=PB,又PB=PE,
∴PA=PE,
∴∠PAE=45°,又∠DAC=45°,
∴∠CAE=90°,即△ACE是直角三角形;
②∵EP平分∠AEC,EP⊥AG,
∴AP=PG=a-b,BG=a-(2a-2b)=2b-a
∵PE∥CF,
∴
PE |
BC |
PG |
GB |
b |
a |
a-b |
2b-a |
解得,a=
2 |
作GH⊥AC于H,
∵∠CAB=45°,
∴HG=
| ||
2 |
| ||
2 |
2 |
2 |
2 |
∴GH=GB,GH⊥AC,GB⊥BC,
∴∠HCG=∠BCG,
∵PE∥CF,
∴∠PEG=∠BCG,
∴∠AEC=∠ACB=45°.
∴a:b=
2 |
看了 已知正方形ABCD,P为射线...的网友还看了以下:
如图,在矩形ABCD中,AB=3,BC=4,G为边AD的中点,若E、F为边AB上的两个动点,点E在 2020-04-13 …
初中数学题:如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作C 2020-04-26 …
如图在正方形ABCD中点E在边AB上再点E作FG垂直于DEFG与边BC相交于点F与边DA的延长线相 2020-06-12 …
(2012•陕西)如图,正三角形ABC的边长为3+3.(1)如图①,正方形EFPN的顶点E、F在边 2020-07-10 …
如图,在正方形ABCD中,点P为AB上一点,AQ⊥DP交BC于点Q,以AQ为边作平行四边形ABHQ 2020-07-26 …
已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到 2020-08-02 …
采用如下方法可以得到黄金分割点:如图,设AB是已知线段,以AB为边作正方形ABCD取AD的中点E连 2020-08-02 …
如图,正三角形ABC的边长为23.(1)正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在 2020-08-02 …
如图,木工要用一个正方形木板制成一个正八边形采取了如下方式作图:先确定正方形ABCD的中心O,再分别 2020-12-01 …
正三角形ABC内一点P,向三边作垂线,垂足在AB边上为D,BC边上为E,AC边上为F,三角形ABC的 2020-12-25 …