早教吧作业答案频道 -->其他-->
已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(Ⅰ)求x0的值;(Ⅱ)若f(x0)=1,且对任意n∈N*,有an=f()+1,
题目详情
已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(Ⅰ)求x0的值;(Ⅱ)若f(x0)=1,且对任意n∈N*,有an=f(
)+1,求{an}的通项公式;
(Ⅲ)若数列{bn}满足bn=2lo
an+1,将数列{bn}的项重新组合成新数列{cn},具体法则如下:c1=b1,c2=b2+b3,c3=b4+b5+b6,…,求证:
+
+
+…+
<
.
(Ⅰ)求x0的值;(Ⅱ)若f(x0)=1,且对任意n∈N*,有an=f(

(Ⅲ)若数列{bn}满足bn=2lo






▼优质解答
答案和解析
(Ⅰ)令x1=x2=0,得f(x0)=-f(0),①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①、②得f(x0)=f(1),又因为f(x)为单调函数,∴x0=1…(2分)
(Ⅱ)由(1)得f(x1+x2)=f(x1)+f(x2)+1,
,∴
,a1=1
,…(3分)
…(4分)∴
,…(5分)
(Ⅲ)bn=2lo
an+1=2n+1…(6分)
由{Cn}的构成法则可知,Cn应等于{bn}中的n项之和,其第一项的项数为
[1+2+…+(n-1)]+1=
+1,即这一项为2×[
+1]-1=n(n-1)+1
Cn=n(n-1)+1+n(n-1)+3+…+n(n-1)+2n-1=n2(n-1)+
=n3 …(8分)
1
当n≥3时,
…(10分)
∴:
+
+
+…+
<

…(12分)
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①、②得f(x0)=f(1),又因为f(x)为单调函数,∴x0=1…(2分)
(Ⅱ)由(1)得f(x1+x2)=f(x1)+f(x2)+1,





(Ⅲ)bn=2lo

由{Cn}的构成法则可知,Cn应等于{bn}中的n项之和,其第一项的项数为
[1+2+…+(n-1)]+1=


Cn=n(n-1)+1+n(n-1)+3+…+n(n-1)+2n-1=n2(n-1)+

1

当n≥3时,

∴:






…(12分)
看了 已知定义在R上的单调函数f(...的网友还看了以下:
已知函数f(x)=-x+3-3a(x小于零),-x的平方+a大于等于零0,满足任意的x1,x2属于 2020-05-14 …
已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数 则( ) A 2020-05-16 …
已知M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),使得对函数f(x)定义域内的任 2020-05-17 …
已知函数f(x)=x-a/x-2lnx,a∈R.(1)函数f(x)的单调性(2)偌f(x)有两已知 2020-07-13 …
如果对任意x1,x2∈R,都有f[(x1+x2)/2]≤1/2[f(x1)+f(x2),则称函数f 2020-07-29 …
已知函数f(x)=x-a/x-2lnx,a∈R(1)讨论函数f(x)的单调性(已知函数f(x)=x 2020-08-01 …
数学分析齐次函数和欧拉定理的两个问题(不是很难,1、已知函数f(x1,x2)=(x1^2+x2^2 2020-08-02 …
知函数f(x)={1/|x-1|(x≠1),1(x=1)},若关于×的函数h(x)=f(x)^2+b 2020-11-20 …
1、已知函数y=x2-x+2(-1<x<5),求函数值y的取值范围.2、已知函数y=x2-6x+8, 2020-12-08 …
求导已知函数f(x)=x2-2lnx+a(a为实数)(1)求f(x)的单调区间(2)若对于x1,x2 2021-02-16 …