早教吧作业答案频道 -->数学-->
(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=°(直接写出结论,不需证明).(2)已知:如图2,Rt△ABC中,∠
题目详情
(1)已知:如图1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,猜想:∠PAC+∠PBC=______°(直接写出结论,不需证明).
(2)已知:如图2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.

(2)已知:如图2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,点E为AB中点,PE⊥AB交CD的延长线于P,(1)中结论是否成立,若成立,请证明;若不成立请说明理由.

▼优质解答
答案和解析
(1)猜想:∠PAC+∠PBC=180°;
(2)结论:依然成立.
证明:连接CE.
∵E为AB中点,
∴AE=EB=EC,
∴∠EAC=∠ECA,
∴∠DCE=∠ECA-∠DCA=∠EAC-45°,
又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,
∴PE=EC=AE,
∴△PAE与△PBE为等腰直角三角形,∠APB=90°,
∴∠PAC+∠PBC=360°-∠APB-∠ACB=360°-90°-90°=180°.
(2)结论:依然成立.

证明:连接CE.
∵E为AB中点,
∴AE=EB=EC,
∴∠EAC=∠ECA,
∴∠DCE=∠ECA-∠DCA=∠EAC-45°,
又∵∠DAC=180°-∠ADC-45°=135°-∠PDE,
∴∠DCE=135°-∠PDE-45°=90°-∠PDE=∠DPE,
∴PE=EC=AE,
∴△PAE与△PBE为等腰直角三角形,∠APB=90°,
∴∠PAC+∠PBC=360°-∠APB-∠ACB=360°-90°-90°=180°.
看了 (1)已知:如图1,Rt△A...的网友还看了以下:
为确保信息安全,信息需要加密传输,发送方由明文→密文(加密)接受方由密文→明文(解密)已知加密规则 2020-05-17 …
设原命题是:“已知函数f(x)是R上的增函数,”若a+b>0则f(a)+f(b)>f(-a)+f( 2020-05-17 …
已知a+b+c=1,求证:√2≤√(a^2+b^2)+√(b^2+c^2)+√(c^2+a^2)≤ 2020-05-20 …
明明和娟娟同时从自家走向学校(如下图),明明每分走a米,娟娟每分走b米,经过4分,他们在校门口相遇 2020-05-22 …
如图,在一圆形的跑道上,小明从A点、小强从B点同时出发反向行走,6分种后,小明与小强相遇,再过4分 2020-06-30 …
证明:如果A=空集或者B=空集,则A交B=空集我看答案上写的分情况讨论,先是当A=空集B≠空集然后 2020-07-30 …
全等三角形问题已知三角形ABC和三角形A'B'C'中,AB=A'B',AC=A'C',如果AD、A 2020-08-01 …
某公园掷飞标游艺区游戏规则如下:掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部 2020-08-01 …
在学校组织的游艺会上,投飞标游艺区游戏区规则如下,如图投到A区和B区的得分不同,A区为小圆内部分, 2020-08-01 …
从物理学的角度分析不正确的是()A.“破镜难圆”说明分子间存在斥力B.“一个巴掌拍不响”说明力的作用 2020-11-08 …