早教吧作业答案频道 -->数学-->
如图,在菱形ABCD中,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF的度数.
题目详情
如图,在菱形ABCD中,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF的度数.


▼优质解答
答案和解析
如图,连接AC,
在菱形ABCD中,AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,
∵∠BAE+∠CAE=∠BAC=60°,
∠CAF+∠EAC=∠EAF=60°,
∴∠BAE=∠CAF,
∵∠B=∠ACF=60°,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
∴60°+∠CEF=60°+20°,
解得∠CEF=20°.

在菱形ABCD中,AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,
∵∠BAE+∠CAE=∠BAC=60°,
∠CAF+∠EAC=∠EAF=60°,
∴∠BAE=∠CAF,
∵∠B=∠ACF=60°,
在△ABE和△ACF中,
|
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
∴60°+∠CEF=60°+20°,
解得∠CEF=20°.
看了 如图,在菱形ABCD中,E,...的网友还看了以下:
设四阶矩阵B=1−101000000−101−101,C=2102000034132102,且矩阵 2020-04-12 …
椭圆x2a2+y2b2=1(a>b>0)与圆x2+y2=(b2+c)2(c为椭圆半焦距)有四个不同 2020-05-15 …
设栈S的初始状态为空,元素a,b,c,d,e,f依次入栈S,出栈的序列为b,d,f,e,c,a…… 2020-05-17 …
以下关于局部总线说法正确的是( )。A.EISA比PCI更优秀B.PCI是视频电子标准协会制定的 C 2020-05-23 …
如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+ 2020-06-12 …
搞脑筋的题目警察在盘问5个小偷嫌疑犯:ABCDE他们当中有3个人说真话.根据他们的说法,你能判断出 2020-06-17 …
关于这个警察与小偷的数学逻辑问题,:警察在盘问5个小偷嫌疑犯:ABCDE他们当中有3个人说真话.根 2020-07-08 …
设a∈R,若函数y=x+alnx在区间(1e,e)有极值点,则a取值范围为()A.(1e,e)B. 2020-07-20 …
(2014•海门市模拟)图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第 2020-11-01 …
已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则[]A.a⊥eB.a⊥(a 2020-11-02 …