早教吧作业答案频道 -->数学-->
已知抛物线y=ax+bx+3与x轴交点于A(1,0)B(-3,0)于y轴交点为C,若点E为第二象限若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求着时E点坐标
题目详情
已知抛物线y=ax+bx+3与x轴交点于A(1,0)B(-3,0)于y轴交点为C,若点E为第二象限
若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求着时E点坐标
若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求着时E点坐标
▼优质解答
答案和解析
(1)由题意知 方程 ax^2+bx+3=0的两根分别是 1,--3
所以 由韦达定理可得:1+(--3)=--b/a
1*(--3)=3/a
由此解得:a=--1,b=--2
所以 所求抛物线的解析式为:y=--x^2-2x+3
(2)抛物线与Y轴交点C的坐标是:C(0,3)
抛物线的对称轴是直线:x=--1,所以M点的坐标是M(--1,0)
因为 点P在对称轴上,所以可设 点P的坐标为(--1,Y.)
则 IPM I=IyI,IPCI=根号里面[1+(y-3)^2 ],IMCI=根号10
因为三角形CMP是等 腰三角形
所以必须是 IPMI=IPCI 或 IPMI=IMCI 或 IPCI=IMCI.
当IPMI=IPCI时 IyI=根号里面[1+(y--3)^2] 即 y^2=1+y^2--6y+9 所以 y=5/3
当IPMI=IMCI时 IyI=根号10 所以 y=根号10 或 y=--根号10.
当IPCI=IMCI时 1+(y--3)^2=10 即 y^2--6y=0 所以 y=0或 y=6
所以说 在对称轴上是存在一点P使三角形CPM为等腰三角形
点P的坐标是(--1,5/3) 或 (--1,根号10)或 (--1,--根号10)或 (--1,6)
(3)设点E坐标为(x,y),E在第二象限,画出图像可知-3
所以 由韦达定理可得:1+(--3)=--b/a
1*(--3)=3/a
由此解得:a=--1,b=--2
所以 所求抛物线的解析式为:y=--x^2-2x+3
(2)抛物线与Y轴交点C的坐标是:C(0,3)
抛物线的对称轴是直线:x=--1,所以M点的坐标是M(--1,0)
因为 点P在对称轴上,所以可设 点P的坐标为(--1,Y.)
则 IPM I=IyI,IPCI=根号里面[1+(y-3)^2 ],IMCI=根号10
因为三角形CMP是等 腰三角形
所以必须是 IPMI=IPCI 或 IPMI=IMCI 或 IPCI=IMCI.
当IPMI=IPCI时 IyI=根号里面[1+(y--3)^2] 即 y^2=1+y^2--6y+9 所以 y=5/3
当IPMI=IMCI时 IyI=根号10 所以 y=根号10 或 y=--根号10.
当IPCI=IMCI时 1+(y--3)^2=10 即 y^2--6y=0 所以 y=0或 y=6
所以说 在对称轴上是存在一点P使三角形CPM为等腰三角形
点P的坐标是(--1,5/3) 或 (--1,根号10)或 (--1,--根号10)或 (--1,6)
(3)设点E坐标为(x,y),E在第二象限,画出图像可知-3
看了 已知抛物线y=ax+bx+3...的网友还看了以下:
有一扇重为8.1千克的门,门宽1.2米,通过两个相距0.8米的连接点连接到墙上,求上面一个连接点水 2020-04-25 …
如图:在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF 2020-05-15 …
在Rt△ABC中,AC=BC,P是BC中垂线MN上一动点,连接PA,交CB于E,F是点E关于MN的 2020-06-12 …
如图所示为一个多量程多用电表的简化电路图.单刀多掷开关S可以与不同接点连接.当S接1或2时为;当S 2020-07-12 …
已知正方形ABCD中,点E在BC上,连接AE,过点B作BF⊥AE于点G,交CD于点F.(1)如图1 2020-07-19 …
如图1已知在圆O中,点C为劣弧AB的中点,连接AC并延长至D,使CD=CA,连接DB并延长交圆O如 2020-07-31 …
在正方形ABcD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过 2020-11-02 …
如图所示为一个多量程多用电表的简化电路图.单刀多掷开关S可以与不同接点连接.下列说法正确的是()A. 2020-11-28 …
三角形ABC为任意三角形,D为BC的中点,连接AD.O为AD上任意一点,连接BO,交AC于F,连接C 2020-12-19 …
如图,已知四边形AEBC,对角线AB,CE为O的直径,以BC为直径的圆与AB交与点D,连接CD,过点 2020-12-25 …