早教吧作业答案频道 -->数学-->
如图,已知四边形AEBC,对角线AB,CE为O的直径,以BC为直径的圆与AB交与点D,连接CD,过点O作OF⊥BE于点M,OF交O于点F,连接AF,交CB于点G,交BE于点N,连接EF.若∠BCD=30°.(1)四边形AEBC
题目详情
如图,已知四边形AEBC,对角线AB,CE为 O的直径,以BC为直径的圆与AB交与点D,连接CD,过点O作OF⊥BE于点M,OF交 O于点F,连接AF,交CB于点G,交BE于点N,连接EF.若∠BCD=30°.

(1)四边形AEBC是___形;
(2)求证:△AEG≌△CBD;
(3)△EFN与△ACO是否相似?若相似,请求出相似比;若不相似,请说明理由.

(1)四边形AEBC是___形;
(2)求证:△AEG≌△CBD;
(3)△EFN与△ACO是否相似?若相似,请求出相似比;若不相似,请说明理由.
▼优质解答
答案和解析
(1)∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
∴四边形AEBC是矩形;
(2)如图1,

由(1)知,四边形AEBC是矩形,
∴AE=BC,
∵以BC为直径的圆与AB交与点D,
∴∠BDC=90°,
由∠BCD=90°,可求:∠1=60°,
∴∠2=∠1=60°,
∵OA=OE,
∴△OAE为等边三角形,
∴∠OAE=60°,
∵OF⊥BE,
∴弧EF=弧BF,
∴∠3=∠4=30°,
∴∠3=∠BCD,
在△AEG和CBD中,
,
∴△AEG≌△CBD;
(3)如图2
∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
由(2)知∠2=∠1=60°,
可求:∠7=∠8=30°,
∴∠6=∠7=30°,
由(2)知,弧EF=弧BF,∠4=30°,
∴∠5=∠4=30°,
∴∠5=∠6=∠7=∠8=30°,
∴△EFN∽△ACO;
∴∠3=∠6=30°,
∴EF=AE,
在Rt△AEC中,∠7=30°,
∴
=tan∠7=tan30°=
;
∴两三角形的相似比为:
.
∴∠CAE=∠ACB=∠CBE=90°,
∴四边形AEBC是矩形;
(2)如图1,

由(1)知,四边形AEBC是矩形,
∴AE=BC,
∵以BC为直径的圆与AB交与点D,
∴∠BDC=90°,
由∠BCD=90°,可求:∠1=60°,
∴∠2=∠1=60°,
∵OA=OE,
∴△OAE为等边三角形,
∴∠OAE=60°,
∵OF⊥BE,
∴弧EF=弧BF,
∴∠3=∠4=30°,
∴∠3=∠BCD,
在△AEG和CBD中,
|
∴△AEG≌△CBD;
(3)如图2
∵AB,CE为 O的直径,
∴∠CAE=∠ACB=∠CBE=90°,
由(2)知∠2=∠1=60°,
可求:∠7=∠8=30°,
∴∠6=∠7=30°,
由(2)知,弧EF=弧BF,∠4=30°,
∴∠5=∠4=30°,
∴∠5=∠6=∠7=∠8=30°,
∴△EFN∽△ACO;
∴∠3=∠6=30°,
∴EF=AE,
在Rt△AEC中,∠7=30°,
∴
AE |
AC |
| ||
3 |
∴两三角形的相似比为:
| ||
3 |

看了如图,已知四边形AEBC,对角...的网友还看了以下:
1.已知抛物线M:=4x,圆N:(x-1)+y=r(其中r为常数r>0),过点(1,0)的直线l交 2020-05-13 …
文言文,快下列句子中加点的词意思相同的两项是A.有欹器焉必有我师焉的焉B.孔子问于守庙者曰留蚊于素 2020-05-13 …
已知方程组ax+y=b cx+y=d的解是x=1、y=-2,已知a、b、c、d都是常数,且a不等于 2020-05-16 …
已知抛物线y=x^2-4x+3与x轴交于点AB(A左B右)与y轴交于C点P是抛物线对称轴上一点,且 2020-05-16 …
关于比例的基本性质已知a比b等于c比d(b+或-d不等于0),求证:a+c比a-c等于b+d比b- 2020-05-16 …
如图,已知圆O1,圆O2 外切于P,过圆O1上一点B作圆O1切线交圆O2于C、D,直线PB交圆O2 2020-05-17 …
速求此三道几何题答案,1.已知一个三角形的三边为a,b,c,且a小于等于b小于等于c,周长l,求变 2020-05-20 …
如图:已知抛物线与X轴交于A、B两点,与Y轴正半轴交于C点,直线X=1是抛物线的对称轴,如图:已知 2020-06-03 …
已知:点C为线段AB上一点,△ACM、△CBN是等边三角形,已知:点C为线段AB上一点,△ACM、 2020-06-06 …
已知圆C与圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,又圆C经过 2020-06-12 …