早教吧作业答案频道 -->数学-->
已知关于x的一元二次方程x^2-(m^2+3)x+1/2(m^2+2)=0.(1)求证:无论M是任何实数,方程有两个正根.(2)设X1,X2为方程的两根,...,且满足x1^2+x2^2=17/2,求M的值.
题目详情
已知关于x的一元二次方程x^2-(m^2+3)x+1/2(m^2+2)=0.
(1)求证:无论M是任何实数,方程有两个正根.(2)设X1,X2为方程的两根,...,且满足x1^2+x2^2=17/2,求M的值.
(1)求证:无论M是任何实数,方程有两个正根.(2)设X1,X2为方程的两根,...,且满足x1^2+x2^2=17/2,求M的值.
▼优质解答
答案和解析
(1)x²-(m²+3)x+1/2(m²+2)=0
判别式=(m²+2)²-4*(1/2)*(m²+3)=(m²+3)(m²+3-2)=(m²+3)(m²+1)>0恒成立
所以方程有2个不相等的实数根
韦达定理
x1*x2=1/2(m²+2)>0恒成立
所以x1和x2同号
x1+x2=m²+3>0恒成立
所以x1>0,x2>0
所以根据以上,方程有2个不相等的正根
(2)把a^2+b^2-ab=17/2化为
a^2+2ab+b^2-3ab=17/2
(a+b)^2-3ab=17/2
由题意得a+b=m^2+3,ab=1/2(m^2+2),把它代入(a+b)^2-3ab=17/2,
m^2=-5(舍去),m^2=1/2
所以m=正负根号2/2
判别式=(m²+2)²-4*(1/2)*(m²+3)=(m²+3)(m²+3-2)=(m²+3)(m²+1)>0恒成立
所以方程有2个不相等的实数根
韦达定理
x1*x2=1/2(m²+2)>0恒成立
所以x1和x2同号
x1+x2=m²+3>0恒成立
所以x1>0,x2>0
所以根据以上,方程有2个不相等的正根
(2)把a^2+b^2-ab=17/2化为
a^2+2ab+b^2-3ab=17/2
(a+b)^2-3ab=17/2
由题意得a+b=m^2+3,ab=1/2(m^2+2),把它代入(a+b)^2-3ab=17/2,
m^2=-5(舍去),m^2=1/2
所以m=正负根号2/2
看了 已知关于x的一元二次方程x^...的网友还看了以下:
若关于x的方程 ax^2-2x^2=2 是一元二次方程,则a的值是( )若关于x的方程 ax^2- 2020-05-15 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>c)的离心率为√2/2,以该椭圆上的点和椭圆的 2020-06-30 …
观察下列两组算式(2*3)^2与2^2*3^2[(-1/3)*6]^2与(-1/3)^观察下列两组 2020-07-22 …
编写一道关于x的一元一次方程使之满足下列条件:1.该方程的解为x=4;2.方程一共有4项,其中3项 2020-08-02 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
二元一次方程组,求后面的过程|3/4(3x-2)+2/5(4y-3=1|2(3x-2)+3(4y- 2020-08-03 …
口语交际(2分)一个顾客在酒吧里喝啤酒,他喝完第二杯之后,转身问酒吧的老板:“你们一周能卖多少桶啤 2020-08-04 …
1.下面的数组是按一定顺序的:(1,1)(1,2)(2,1)(1,3)(2.2)(3,1)(1,4) 2020-11-24 …
一元3次方程化成一元2次方程的方法比如:X^3-3X+2=(X-1)^2(X+2)1.如何把一个一元 2020-11-30 …