早教吧作业答案频道 -->数学-->
如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,作∠CDE=∠A,过点C作CE⊥CD交DE于E,联结BE求证:AB⊥BE
题目详情
如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,作∠CDE=∠A,过点C作CE⊥CD交DE于E,联结BE
求证:AB⊥BE
求证:AB⊥BE
▼优质解答
答案和解析
根据相似三角形的判定,得到△BCE∽△ACD,根据已知及相似三角形的对应角相等,即可求得结论.
∵CE⊥CD,
∴∠DCE=∠ACB=90°
又∵∠CDE=∠A
∴△DCE∽△ACB,
∴ CE/CB=CD/CA;
∴ CE/CD=CB/CA,
∵∠DCE=∠ACB=90°,
∴∠BCE=∠ACD,
∴△BCE∽△ACD,
∴∠CBE=∠A,
∵∠A+∠ABC=90°,
∴∠CBE+∠ABC=90°,
∴∠ABE=90°,
∴AB⊥BE.
此题主要考查相似三角形的判定及性质的综合运用.
∵CE⊥CD,
∴∠DCE=∠ACB=90°
又∵∠CDE=∠A
∴△DCE∽△ACB,
∴ CE/CB=CD/CA;
∴ CE/CD=CB/CA,
∵∠DCE=∠ACB=90°,
∴∠BCE=∠ACD,
∴△BCE∽△ACD,
∴∠CBE=∠A,
∵∠A+∠ABC=90°,
∴∠CBE+∠ABC=90°,
∴∠ABE=90°,
∴AB⊥BE.
此题主要考查相似三角形的判定及性质的综合运用.
看了 如图,在Rt△ABC中,∠A...的网友还看了以下:
(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E 2020-05-16 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,直线x=2被椭圆E截 2020-05-16 …
已知a+b+c=H a+b+e=J a+d+e=K b+c+d=M c+d+e=N 求a=?b=? 2020-05-16 …
倾角为θ的光滑斜面C固定在水平面上,将两物体A、B叠放在斜面上,且同时由静止释放,若A、B的接触面 2020-05-17 …
e^a*e^b等于e^ab吗?e^a-e^b=e^b*(e^(a/b)-1)对吗?那e^a/e^b 2020-06-10 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的 2020-07-29 …
过顶点在原点、对称轴为y轴的抛物线E上的定点A(2,1)作斜率分别为k1、k2的直线,分别交抛物线 2020-07-30 …
椭圆C:+=1(a>b>0)的离心率e=,a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D 2020-08-01 …