早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,一水池深为h,一根长直木棍竖直地插入水底,棍露出水面部分的长度L,当太阳光与水平面夹角为60°斜射到水面时,求棍在水底的影子的长度.(已知水的折射率为n)

题目详情
如图所示,一水池深为h,一根长直木棍竖直地插入水底,棍露出水面部分的长度L,当太阳光与水平面夹角为60°斜射到水面时,求棍在水底的影子的长度.(已知水的折射率为n)
作业帮
▼优质解答
答案和解析
如图所示为光路图,作业帮
水面部分的投影长为x1=Ltan30°,
设光从空气进入水中的折射角为γ,根据折射定律得,
sin30°
sinγ
=n,
则可得cosγ=
4n2-1
2n
,tanγ=
1
4n2-1

根据几何关系可得x2=htanγ=
h
4n2-1

即棍在水底的影子长度为x=x1+x2=
3
L
3
+
h
4n2-1

答:棍在水底的影子的长度为
3
L
3
+
h
4n2-1
看了 如图所示,一水池深为h,一根...的网友还看了以下: