早教吧作业答案频道 -->数学-->
设a,b,c为某三角形三边长,求证a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)小于等于3abc
题目详情
设a,b,c为某三角形三边长,求证a^2(b+c-a) + b^2(c+a-b) + c^2(a+b-c)小于等于3abc
▼优质解答
答案和解析
解一:排序不等式
设a≥b≥c
可知a(b+c-a)≤b(c+a-b)≤c(a+b-c),
排序不等式:倒序小于乱序
a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ba(b+c-a)+cb(c+a-b)+ac(a+b-c)
a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ca(b+c-a)+ab(c+a-b)+bc(a+b-c)
两式相加
2[a2(b+c-a)+b2(c+a-b)+c2(a+b-c)]≤ba(b+c-a)+cb(c+a-b)+ac(a+b-c)
+ca(b+c-a)+ab(c+a-b)+bc(a+b-c)
=b^2a+abc-a^2b+c^2b+abc-b^2c+a^2c+abc-c^2a+abc+c^2a-a^2c+abc+a^2b-ab^2+abc+b^2c-bc^2=6abc
所以a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)
设a≥b≥c
可知a(b+c-a)≤b(c+a-b)≤c(a+b-c),
排序不等式:倒序小于乱序
a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ba(b+c-a)+cb(c+a-b)+ac(a+b-c)
a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ca(b+c-a)+ab(c+a-b)+bc(a+b-c)
两式相加
2[a2(b+c-a)+b2(c+a-b)+c2(a+b-c)]≤ba(b+c-a)+cb(c+a-b)+ac(a+b-c)
+ca(b+c-a)+ab(c+a-b)+bc(a+b-c)
=b^2a+abc-a^2b+c^2b+abc-b^2c+a^2c+abc-c^2a+abc+c^2a-a^2c+abc+a^2b-ab^2+abc+b^2c-bc^2=6abc
所以a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)
看了 设a,b,c为某三角形三边长...的网友还看了以下:
分解因式a(a-b-c)+b(c-a+b)+c(b-a+c)的结果是()A.(b+c-a)2B.( 2020-04-08 …
matlab解中学三角函数方程数学题,不会求大大~~~~~~~~~~[a,b,c,A,B,C]=s 2020-05-14 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
a(b-c)^5+b(c-a)^5+c(a-b)^5分解为(a-b)(b-c)(c-a)L(aa( 2020-07-09 …
设a,b,c都是正数且a+b+c=1,求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b) 2020-07-25 …
利用(a+b+c)^2=a^2+b^2^c^2+2ab+2ac+abc,推导(a+b+c)^2+a 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
100%收购公司其中一名法人股东涉及到的问题事实:A.B.C.D为四个法人。A.B公司为C公司的股东 2020-11-06 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
判断下列命题的真假已知a,b,c,d∈R(1)若ac>bc,则a>b(2)若a>-b,则c-ab>c 2020-12-13 …