早教吧作业答案频道 -->数学-->
已知等比数列{An}中,A4=14,前10项和S10=185(1)求An(2)已知数列{Bn}的通项公式Bn=2ˆn•An,求{Bn}的前n项和Tn
题目详情
已知等比数列{An}中,A4=14,前10项和S10=185
(1)求An(2)已知数列{Bn}的通项公式Bn=2ˆn•An,求{Bn}的前n项和Tn
(1)求An(2)已知数列{Bn}的通项公式Bn=2ˆn•An,求{Bn}的前n项和Tn
▼优质解答
答案和解析
an :等差数列?
an=a1+(n-1)d
a4=14
a1+3d=14 (1)
S10=185
(2a1+9d)5 =185
2a1+9d =37 (2)
(2)-2(1)
3d=9
d=3
a1= 5
an = 5+3(n-1) = 3n+2
let
S =1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S= n.2^(n+1) -(2+2^2+...+2^n)
=n.2^(n+1) -2(2^n-1)
bn=2^n .an
= (3n+2).2^n
= 3(n.2^n) + 2^(n+1)
Tn =b1+b2+...+bn
=3S + 4(2^n-1)
=3n.2^(n+1) -2(2^n-1)
= 2 + (6n-2).2^n
an=a1+(n-1)d
a4=14
a1+3d=14 (1)
S10=185
(2a1+9d)5 =185
2a1+9d =37 (2)
(2)-2(1)
3d=9
d=3
a1= 5
an = 5+3(n-1) = 3n+2
let
S =1.2^1+2.2^2+...+n.2^n (1)
2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)
(2)-(1)
S= n.2^(n+1) -(2+2^2+...+2^n)
=n.2^(n+1) -2(2^n-1)
bn=2^n .an
= (3n+2).2^n
= 3(n.2^n) + 2^(n+1)
Tn =b1+b2+...+bn
=3S + 4(2^n-1)
=3n.2^(n+1) -2(2^n-1)
= 2 + (6n-2).2^n
看了 已知等比数列{An}中,A4...的网友还看了以下:
S=0^2×1/N+(1/N)^2×1/N+(2/N)^2×1/N+…+(N—1/N)^2×1/N 2020-05-13 …
一个不等式证明已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n下面是我的证明, 2020-05-13 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
求证:(1)A(n+1,n+1)-A(n,n)=n^2A(n-1,n-1);(2)C(m,n+1) 2020-06-03 …
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1) 2020-06-22 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
P(n)推导已知p(1)=1;p(n)=(1-1/(n^2))p(n-1)+2/n-1/(n^2) 2020-08-01 …